• Title/Summary/Keyword: engineering site

Search Result 7,646, Processing Time 0.042 seconds

The Influence Factors on the Compensation of Column Shortening in Tall Buildings (초고층 건물의 Column Shortening보정에 미치는 영향요소)

  • Mun, Il-Won;Choi, Ki-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.208-215
    • /
    • 2018
  • The causes of column shrinkage and the codes that have been studied up to now are discussed. The documents mentioned in the code deal with the drying shrinkage, creep, compressive strength and elastic modulus of the specimen, and the elastic deformation calculated from the structural analysis. However, the deformation due to the temperature caused by the long term monitoring is less than that caused by the factors generated by the previous studies. In the previous studies, it was found that dehydration shrinkage, creep, and elastic deformation were not considered for temperature-induced deformation, while for the specimen experiments, the temperature-related items were replaced with the humidity-related terms The compensation value by the proposed equation showed error of 4.9 mm in the upper direction and 1.0mm in the lower direction when calculating column shortening, and it was found that its value by the proposed equation almost coincided with the measurement value in Site. Therefore, it is necessary to further study the temperature that can be omitted in calculating the existing column shortening, to consider the influence factors, and to supplement the criteria for the temperature measurement of the structure as well as the specimen tests.

A Study on the Lining Stability of Old Tunnel Using Groundwater Flow Modelling and Coupled Stress-Pore Water Pressure Analysis (지하수 유동과 응력-간극수압 연계 해석을 통한 노후터널의 라이닝 안정성 분석)

  • Kim, Bum-Joo;Jung, Jae-Hoon;Jang, Yeon-Soo;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.101-113
    • /
    • 2012
  • The degradation of a tunnel drainage system leads to increases in pore water pressure around the tunnel and the lining stress, which results in affecting the tunnel stability. In the present study of the Namsan 3th tunnel, more than 30 year old tunnel, the effects of the drainage performance reduction due to drain hole clogging on the tunnel lining stability were investigated by examining pore water pressure distribution around the tunnel and the lining stresses through numerical analysis. Groundwater flow modeling on the Mt. Namsan region was done first and 3D seepage and coupled stress-pore water pressure finite element analysis were performed on the tunnel using the results of the groundwater flow modeling. The pore water pressure distribution and the tunnel lining stresses could be predicted using a drain hole outflow data measured in the tunnel site. This analysis method may be used to evaluate the current stability of old tunnels for which in most cases field investigations and related information are not readily available.

A Preliminary Investigation of Radon Concentration for Some Agricultural Greenhouses in Jeju Island (제주지역 일부 농업 시설 내 라돈 농도 예비 조사)

  • Kang, Tae-Woo;Song, Myeong-Han;Kim, Tae-Hyoung;Chang, Byung-Uck;Kim, Young-Jae;Kim, Geun-Ho;Park, Jae-Woo
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • BACKGROUND: A preliminary investigation of the radon ($^{222}Rn$) concentration has been conducted, employing solid-state nuclear-track detectors (SSNTD) and a continuous radon monitor (CRM), for fourteen randomly selected agricultural greenhouses in Jeju Island, where the underground-air was used for air conditioning and $CO_2$ supplement. METHODS AND RESULTS: The SSNTD was used to measure the average radon concentration for three months and the CRM was used for an instantaneous measurement. In order to obtain the radon concentration of a greenhouse, the SSNTDs were placed at a number of evenly distributed points inside the greenhouse and the mean of the measured values was taken. In addition, in order to assess the radon concentration of the underground-air itself, measurement was also made at the borehole of the underground-air in each agricultural facility, employing both the SSNTD and CRM. It is found that the radon concentration of the greenhouses ranges higher than those not using the underground-air and the average of Korean dwellings. While the radon concentration of most agricultural facilities is still lower than the reference level (1,000 Bq/$m^3$) recommended by the International Radiation Protection Committee (ICRP), three facilities at one site show higher concentrations than the reference level. The three-month-averaged radon concentration and the instantaneous radon concentration of the underground-air itself ranges 1,228- 5,259 and 3,322-17,900 Bq/$m^3$, respectively, and regional variation is more significant. CONCLUSION: From this results, radon concentration of the underground-air is assumed that it is associated with the geological characteristics and the boring depth of the region located of their.

The study of developing the freezing seal isolation method for the pre insulated heat transfer pipe (이중보온 열수송관에 대한 동결차수공법개발에 관한 연구)

  • You, Byounghee;Ahn, Changkoo;Kim, Woocheol;Shin, Ikho
    • Journal of Energy Engineering
    • /
    • v.26 no.3
    • /
    • pp.105-112
    • /
    • 2017
  • A lot of piping systems have been used from nuclear power systems to water supply systems. The maintenance of the piping systems is needed to ensure proper operation of the piping systems. Failure of the large pipe systems especially such as KDHC(Korea District Heating Corporation) can be a matter directly related to the enterprise productivity and profitability. It can also lead to very important issues in promoting public safety and convenience. Therefore a method of quick and safety repairs have been emerged as the most important problem. In this study, freezing seal isolation method using liquid nitrogen cryogenic refrigerant was developed for the maintenance of a pre insulated heat transport pipe of KDHC with a diameter of 300 mm. In this study, by employing computational analysis techniques we performed the flow and heat transfer analysis for the targeted pre insulated heat transfer pipe and freezing seal jacket(ice-Plug) and have selected for optimal system. The detailed design model based on the results of the computational analysis finally was produced. A laboratory-scale test apparatus were designed and the freezing seal isolation self-test carried out. Also the performance assessment tests in the test bed of KDHC were carried out for on-site application.

Introduction of Alien Plants on the Fill and Cut Slopes of the Road Construction in South Korea (우리나라에서 도로 공사장의 성토사면과 절토사면에서 외래식물의 도입)

  • Chu, Yeounsu;Jin, Seung-nam;Son, Deokjoo;Park, Shinyeong;Cho, Hyungjin;Lee, Hyohyemi
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.4
    • /
    • pp.191-199
    • /
    • 2019
  • Road development is considered an important factor in invasion and dispersion of ailen plants by damaging the natural ecosystems and connecting the detached landscapes into long tubular structures. In this study, vegetation survey was carried out according to the topographical characteristics of cut slope, fill slope, and flat land at the construction site in order to understand the effect of road developemt on the change of the floristic composition of ailen plants. Road developement projects caused a lot of changes in annual and biennial alien plants because of continuous disturbances. Changes in species composition of alien plants decreased in the cut slope. On the other hand, the ailen palnts of the fill slope increased. The increase or decrease alien plants on flat land were identified depending on where it occurred, and no major trend was found. The cause of these change was driven by unintentionally introduced alien plants. In particular, the cut slope with a high occurence of unintentional ailen plants should not be used as a source of high-risk alien plants such as ecosystem disturbances. Since the transplanted species were intentionally planted by the landscape plan, it was possible to identify colonies from early stages and spread to the nearby flat land. Therefore, in order to minimize the impact of road slope vegetation on the surrounding ecosystem during and after road construction, it is suggested to plant high viability plants in the landscape design during the environmental impact assessment consultation.

Relationship between fish assemblages community and Streamline complexity (어류군집 특성과 하안형태복잡도와의 관계)

  • Kim, Jin-Ah;Lee, Sang-Woo;Hwang, Gil-Son;Kim, Chulgoo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.2
    • /
    • pp.19-29
    • /
    • 2012
  • Numerous studies suggested that fish assemblage structure reflects the status of stream ecosystems. The status of streams integrity, including various trophic levels, water quality and habitat degradation, can be assessed by fish assemblages. In this study, we investigated the relationships between fish assemblages and streamline geometry of streams. Previous studies suggested that geomorphologic parameter can be a critical factor of permeability between adjacent two systems. From a landscape ecological perspective, edges may partially control the flow rate of energy between two adjacent systems. Thus, the Streamline geometry can be a geomorphologic parameter that exhibits the integrity of stream. We selected the Nakdong river for study areas, which is one of major rivers and the longest (525 km) River in South Korea. We used the revised IBI representing overall ecological characteristics of Korean fish assemblages and eight sub-assessment criteria of IBI, collected from 82 sampling sites in the Nakdong River. For calculating the Streamline geometry, we measured fractal dimension index that generally used in biology, ecology and landscape ecology. We used the digital land-use/land-cover map and generated a 1-km buffer for each sampling site and refined the shape of the Streamlines. Pearson correlation analyses were performed between Streamline geometry and IBI and sub-assessment criteria of IBI. The results show that IBI and eight sub-assessments of fish are significantly correlated with geometry of Streamline. The fractal dimension of Streamline geometry were related with IBI (r = 0.48) and six sub-assessments of IBI, including total number of native fish and native species, the number of riffle benthic species, sensitive species, tolerant species and native insectivore. Especially, the number of tolerant species(r = -0.52) and native insectivore(r = 0.52) show strong correlation with geometry of Streamline. These results indicate that lower Streamline geometry can result in poor fish assemblages, while higher geometry of Streamline can enhance fish assemblages by potentially supplying insects and better habitat conditions. We expect the results of our study to be useful for stream restoration and management. However, we see the necessity of study investigating the mechanisms how Streamline geometry affect fish assemblages.

CO2 and Energy Exchange in a Rice Paddy for the Growing Season of 2002 in Hari, Korea (한국 하리 논에서의 2002년 생장기간의 CO2와 에너지의 교환)

  • Byung-Kwan Moon;Jinkyu Hong;Byoung-Ryol Lee;Jin I. Yun;Eun Woo Park;Joon Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.2
    • /
    • pp.51-60
    • /
    • 2003
  • Rice, which occupies about 60% of the farmland in Korea, is a staple crop in Asia. It not only absorbs $CO_2$ from the atmosphere, but also emits carbon in a form of CH$_4$. It has a potential role in the global budget of greenhouse gases because of its relative contributions of carbon absorption and emission associated with changing hydrologic cycle. To better understand its current and future role, seasonal variations of energy and $CO_2$ exchange in this critical ecosystem need to be quantified. The purpose of this study was to measure, document and understand the exchange of energy and $CO_2$ in a typical rice paddy in Korea throughout the whole growing season. Since late April of 2002, we have conducted measurements of energy and $CO_2$ exchange in a rural rice paddy at Hari site, one of the Korea regional network of tower flux measurement (KoFlux). After the quality control and gap-filling, the observed fluxes were analyzed in the context of micrometeorology and biophysics. $CO_2$ and energy exchanges varied significantly with land cover changes (e.g., plant growth stages), in addition to changes in weather and climate conditions. This study, reporting first direct measurement of energy and $CO_2$ exchange over a rice paddy in Korea, would serve as a useful database as one of the reference sites in AsiaFlux and FLUXNET.

Characteristics of Air Quality in the West Coastal Urban Atmosphere; Characteristics of VOCs Concentration Measured from an Industrial Complex Monitoring Station at Gunsan and a Roadside Station at Jeonju (서해연안 도시지역의 대기질 특성 연구: 군산시 산업단지와 전주시 도로변에서 VOCs 농도분포 특성 연구)

  • Ryoo, Jae-Youn;Kim, Deug-Soo;Chae, Soo-Cheon;Nam, Tu-Cheon;Choi, Yang-Seock
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.6
    • /
    • pp.633-648
    • /
    • 2010
  • The study was performed to elucidate the characteristics of VOCs at distinct monitoring sites in urban atmosphere; one is at a roadside in downtown inland city of Jeonju, and the other is at an industrial site in Gunsan near coastal area. The ambient samples were collected for 24 hours in two-bed adsorbent tubes by using MTS-32 sequential tube sampler equipped with Flex air pump every 16 days in a roadside and a industrial complex from February to November in 2009. VOCs were determined by thermal desorption coupled with GC/MSD. Major individual VOCs in roadside samples were shown as following order in magnitude: toluene>m,p-xylene>ethyl benzene>decanal; and those in the industrial complex samples were as follows: toluene>ethanol>ethyl acetate>decanal>m,pxylene. High benzene concentration in the roadside was more frequently occurred than in the industrial complex. However ambient level of toluene in the industrial complex was higher than that in the road side. Results from roadside sample analysis showed that nonane and 1,2,4-trimethylbenzene were very frequently observed with higher concentrations than those in the industrial complex. It seems that nonane and 1,2,4-trimethylbenzene could be the source characteristics for the roadside air. From the diurnal variation, it was found that concentrations of benzene, ethylbenzene, xylene, nonane and 1,2,4-trimethylbenznene in the roadside were higher during rush hours; but those in the industrial complex were higher from 10 to 16 LST when the industrial activities were animated. On weekly base, the concentration of benzene, toluene, ethylbenzene and m,p-xylene in the roadside were higher specifically on Wednesday, but those in the industrial complex were higher on Sunday. It was found that the general trends of VOCs levels at both sites significantly influence on seasonal changes. The results of factor analysis showed that the VOCs in the roadside were mainly affected by the emission of vehicles and the evaporation of diesel fuel, meanwhile those in the industrial complex were influenced by the evaporation of solvents and vehicular emission.

2-D Axisymmetric Non-linear Finite Strain Consolidation Model Considering Self-weight Consolidation of Dredged Soil (준설매립지반의 자중압밀을 고려한 2차원 축대칭 비선형 유한변형 압밀 모델)

  • Kwak, Tae-Hoon;Lee, Dong-Seop;Lim, Jee-Hee;Stark, T.D.;Choi, Eun-Seok;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.8
    • /
    • pp.5-19
    • /
    • 2012
  • Vertical drains along with the preloading technique have been commonly used to enhance the consolidation rate of dredged placement formation. In practice, vertical drains are usually installed in the process of self-weight consolidation of a dredged soil deposit because this process takes considerable time to be completed, which makes conventional analytical or numerical models difficult to quantify the consolidation behavior. In this paper, we propose a governing partial differential equation and develop a numerical model for 2-D axisymmetric non-linear finite strain consolidation considering self-weight consolidation to predict the behavior of a vertical drain in the dredged placement foundation which is installed during the self-weight consolidation. In order to verify the developed model in this paper, results of the numerical analysis are compared with that of the lab-scaled self-weight consolidation test. In addition, the model verification has been carried out by comparing with the simplified method. The comparisons show that the developed model can properly simulate the consolidation of the dredged placement formation with the vertical drains installed during the self-weight consolidation. Finally, the effect of construction schedule of vertical drains and of pre-loading during the self-weight consolidation is examined by simulating an imaginary dredged material placement site with a thickness of 10 m and 20 m, respectively. This simulation infers the applicability of the proposed method in this research for designing a soil improvement in a soft dredged deposit when vertical drains and pre-loading are implemented before the self-weight consolidation ceases.

A Study of Prestressed Concrete Pile Stiffness for Structural Analysis of Condominium Remodeling with Vertical Story Extension (수직증축형 공동주택 리모델링 구조해석을 위한 PC말뚝 강성에 관한 연구)

  • Choi, Changho;Lee, Hyunjee;Choi, Kisun;You, Youngchan;Kim, Jinyoung
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.81-92
    • /
    • 2017
  • According to the revision of the Housing Act in 2013, it has been possible to carry out an apartment remodeling project involving two to three floor vertical extension. The remodeling project with vertical extension requires foundation reinforcement because structural safety due to additional load and enhanced seismic criteria must be met. In this case, structural analysis is performed to analyze the load distributed to existing PC pile and reinforced additional pile. The vertical stiffness ($K_v$) of the pile is required for structural analysis, but the research on the 20~30 year old PC pile stiffness is very limited. In this paper, the stiffness of the PC pile in accordance with the change of diameter and length was analyzed by examining the results of 38 field pile load tests performed during the construction of the apartments in the 1990's. As a result of the analysis, the pile stiffness decreases with the increase of the length-diameter ratio (L/D). In addition, the results of on-site pile load test are compared with the coefficient 'a' for estimating pile stiffness proposed in Korea Highway Bridge Design Standard (2008) and the Pile Foundation Design Guideline of Korea Railroad Corporation (2012). It shows that 'a' obtained through the estimation of the literature is very similar to the field test results in the range of 10