DOI QR코드

DOI QR Code

A Preliminary Investigation of Radon Concentration for Some Agricultural Greenhouses in Jeju Island

제주지역 일부 농업 시설 내 라돈 농도 예비 조사

  • Received : 2012.03.05
  • Accepted : 2012.03.23
  • Published : 2012.03.31

Abstract

BACKGROUND: A preliminary investigation of the radon ($^{222}Rn$) concentration has been conducted, employing solid-state nuclear-track detectors (SSNTD) and a continuous radon monitor (CRM), for fourteen randomly selected agricultural greenhouses in Jeju Island, where the underground-air was used for air conditioning and $CO_2$ supplement. METHODS AND RESULTS: The SSNTD was used to measure the average radon concentration for three months and the CRM was used for an instantaneous measurement. In order to obtain the radon concentration of a greenhouse, the SSNTDs were placed at a number of evenly distributed points inside the greenhouse and the mean of the measured values was taken. In addition, in order to assess the radon concentration of the underground-air itself, measurement was also made at the borehole of the underground-air in each agricultural facility, employing both the SSNTD and CRM. It is found that the radon concentration of the greenhouses ranges higher than those not using the underground-air and the average of Korean dwellings. While the radon concentration of most agricultural facilities is still lower than the reference level (1,000 Bq/$m^3$) recommended by the International Radiation Protection Committee (ICRP), three facilities at one site show higher concentrations than the reference level. The three-month-averaged radon concentration and the instantaneous radon concentration of the underground-air itself ranges 1,228- 5,259 and 3,322-17,900 Bq/$m^3$, respectively, and regional variation is more significant. CONCLUSION: From this results, radon concentration of the underground-air is assumed that it is associated with the geological characteristics and the boring depth of the region located of their.

본 연구는 제주지역에서 온실 내 냉난방 및 $CO_2$ 공급 목적으로 지하공기를 이용하는 14개 농업 시설을 대상으로 약 3개월 동안 지하공기 이용 온실과 미이용 공간 내 라돈 농도 및 지하공기 이용 시설의 가동에 따른 지하공기 유입구 내 라돈 농도 분포를 조사하였다. 장기간 라돈 농도는 수동형 알파 입자비적 검출기(Raduet, Radosys Ltd., Hungary)로, 실시간 라돈 농도는 능동형 연속측정 검출기(RAD7, Durridge Co., USA)를 이용하여 측정하였다. 지하공기 이용 온실 내 라돈 농도는 지하공기 미이용 공간과 국내 가옥의 실내 평균값보다 높은 범위였으며, 대부분 농업 시설에서는 국제방사선 방호위원회에서 권고한 근무지에서의 참조준위 1,000 Bq/$m^3$ 보다 낮은 반면 한 개 지점에서는 높은 결과를 보였다. 장기간 및 실시간 지하공기 이용 시설의 가동에 따른 유입구의 라돈 농도 분포는 각각 1,228~5,259 및 3,322~17,900 Bq/$m^3$ 범위로 지역적인 차이를 보였다. 본 연구 결과, 지하공기 중 라돈 농도는 농업 시설이 위치한 지역의 지질 특성 및 시추공 깊이와 밀접한 관계가 있을 것으로 판단된다.

Keywords

References

  1. Abd El-Zaher, M., Fahmi, N.M., El-Khatib, A.M., 2008. Risk assessment from radon gas in the greenhouses. in: IX Radiation Physics & Protection Conference, 15-19 November 2008, Nasr City, Cairo, Egypt.
  2. Booh, S.A., Jeong, G.C., Park, C.K., 2006. Marking mechanism of Jeju using preventing groundwater, Proc. Kor. Soc. Eng. Geol. 4, 177-186.
  3. Hulber E., 2009. Overview of PADC nuclear track readers. Recent trends and solutions, Radiat. Meas. 44, 821-825. https://doi.org/10.1016/j.radmeas.2009.10.097
  4. Iyogi, T., Hisamatus, S., Inaba, J., 2006. $^{222}Rn$ concentration in greenhouse in Aomori Prefecture, Japan, Sci. Total Envir. 354, 142-149. https://doi.org/10.1016/j.scitotenv.2005.01.040
  5. Kang, B.R., Kim, G.P., Kim, S.J., 2009. Characteristics of regional underground air distribution for various geothermal utilization, Rep. JERI, Vol. 2, 223-237.
  6. Kim, Y.J., Chang, B.U., Park, H.M., Kim, C.K., Tokinami, S., 2011. National radon survey in Korea, Radiat. Prot. Dosim. 146, 6-10. https://doi.org/10.1093/rpd/ncr094
  7. Korea Institute of Nuclear Safety (KINS), 2009. Radiation environment in the Korea, p. 171.
  8. Oh, J.Y., Yi, S.S., Yoon, S., Koh, G.W., Yun, H.S., Lee, J.D., 2000. Subsurface stratigraphy of Jeju Island, J. Geol. Soc. Korea 36(3), 181-194.
  9. Park, J.B., Kwon, S.T., 1993. Geochemical evolution of the Cheju volcanic island: Petrography and major element chemistry for stratigraphically-controlled lavas from the northern part of Cheju Island, J. Geol. Soc. Korea, 29(1), 39-60.
  10. Tokonami, S., Takahashi, H., Kobayashi, Y., Zhuo, W., Hulber, E., 2005. Up-to-date radon-thoron discriminative detector for a large scale survey, Rev. Sci. Instrum. 76, 113505. https://doi.org/10.1063/1.2132270

Cited by

  1. Elementary School in Gwangju Gwangsan Radon gas Density Measurement vol.8, pp.4, 2014, https://doi.org/10.7742/jksr.2014.8.4.211