• Title/Summary/Keyword: engineering property

Search Result 8,353, Processing Time 0.041 seconds

Gas Hydrate Phase Equilibria of $CO_2+H_2$ Mixture in Silica Gel Pores for the Development of Pre-combustion Capture (연소 전 이산화탄소 회수기술을 위한 실리카겔 공극 내에서의 이산화탄소+수소 혼합가스 하이드레이트의 상평형)

  • Kang, Seong-Pil;Jang, Won-Ho;Jo, Wan-Keun
    • Clean Technology
    • /
    • v.15 no.4
    • /
    • pp.258-264
    • /
    • 2009
  • Thermodynamic measurements were performed to show the possibility of recovering $CO_2$ from fuel gas (the mixture of $CO_2$ and $H_2$) by forming gas hydrates with water where water was dispersed in the pores of silica gel particles having nominal 100 nm of pore diameter. The hydrate-phase equilibria for the ternary $CO_2+H_2$+water in pores were measured and $CO_2$ concentrations in vapor and hydrate phase were determined under the hydrate-vapor two phase region at constant 274.15 K. It was shown that the inhibition effect appeared due to silica gel pores, and the corresponding equilibrium dissociation pressures became higher than those of bulk water hydrates at a specific temperature. In addition, direct measurement of $CO_2$ content in the hydrate phase showed that the retrieved gas from the dissociation of hydrate contained more than 95 mol% of $CO_2$ when 42 mol% of $CO_2$ and balanced Hz mixture was applied. Compared with data obtained in case of bulk water hydrates, which showed just 83 mol% of $CO_2$ where 2-stage hydrate slurry reactor was intended to utilize this property, the hydrate formation in porous silica gel has enhanced the feasibility of $CO_2$ separation process. Hydrate formation as not for slurry but solid particle makes it possible to used fixed bed reactor, and can be a merit of well-understood technologies in the industrial field.

A Study on Structural Safety of CFRP Plate with Notch Hole at Center Part under Torsion (비틀림을 받는 중앙부에 노치홀을 가진 CFRP 판의 구조 안전성에 관한 연구)

  • Kim, Jae-Won;Cho, Jae-Ung
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.11
    • /
    • pp.925-932
    • /
    • 2017
  • In this study, the analysis of plate under torsion was carried out according to stacking angle at the unidirectional carbon fiber reinforced plastic(UD CFRP) among composite materials. In case of UD CFRP, the material property due to stacking angle becomes different. Also, the stacking angles were designated to 15°, 30°, 45°, 60°, 75° and 90° at the study models. The notch hole was applied at the center part by supposing that rivet or hole was used. The analysis method was used by applying the experimental method at ISO 15310. Two jigs were fixed at the lower part and two jigs were descending at the upper part. As seen by the analysis result values at this study, the shear stress happening at the fracture part was seen with the lowest value in case of the stacking angle of 45°. It is known that the case of the stacking angle of 45°has the structural safety and durability higher than those of the other stacking angles when the torsion applies. It is thought that this result can be applied to the data of basis which can be devoted to the durability when the torsion is applied at CFRP plate.

Study on the Fiber Alignment using Vacuum Filtration Method (Vacuum Filtration method를 이용한 단섬유(short fiber) 배열 영향성 분석)

  • Sung-Kwon Lee;Moo-Sun Kim;Ho-Yong Lee;Sung-Woong Choi
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.162-166
    • /
    • 2023
  • Although composite materials are increasingly utilized in general high-strength structures, the demand of performance characteristics as the multifunctional materials has been increased especially in the area of complex electronic devices. While the heat dissipation properties of devices are typically required properties, control of thermal property of composite material especially in the vertical direction is one of the problems to be solved due to its lamination process. In this study, CFRP was manufactured using the Vacuum filtration method for three types of solvent and CFs. In the composite material manufacturing process, the effect of solvent was examined using three solvents where solvents are most frequently used for the dispersion of fibers. Morphology of fiber was observed through a microscope to confirm the arrangement of CFs in the vertical direction. The alignment of fiber was examined through the measurement of the thermal conductivity of the manufactured specimen. For the thermal conductivity measurement, the higher thermal conductivity was obtained with the lower aspect ratio of CF. For the thermal conductivity in the through-plane direction, 8.687 W/m·K, 10.322 W/m·K, and 13.005 W/m·K of thermal conductivity was measured in the DMF, NMP and Acetone, respectively.

Stochastic Self-similarity Analysis and Visualization of Earthquakes on the Korean Peninsula (한반도에서 발생한 지진의 통계적 자기 유사성 분석 및 시각화)

  • JaeMin Hwang;Jiyoung Lim;Hae-Duck J. Jeong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.11
    • /
    • pp.493-504
    • /
    • 2023
  • The Republic of Korea is located far from the boundary of the earthquake plate, and the intra-plate earthquake occurring in these areas is generally small in size and less frequent than the interplate earthquake. Nevertheless, as a result of investigating and analyzing earthquakes that occurred on the Korean Peninsula between the past two years and 1904 and earthquakes that occurred after observing recent earthquakes on the Korean Peninsula, it was found that of a magnitude of 9. In this paper, the Korean Peninsula Historical Earthquake Record (2 years to 1904) published by the National Meteorological Research Institute is used to analyze the relationship between earthquakes on the Korean Peninsula and statistical self-similarity. In addition, the problem solved through this paper was the first to investigate the relationship between earthquake data occurring on the Korean Peninsula and statistical self-similarity. As a result of measuring the degree of self-similarity of earthquakes on the Korean Peninsula using three quantitative estimation methods, the self-similarity parameter H value (0.5 < H < 1) was found to be above 0.8 on average, indicating a high degree of self-similarity. And through graph visualization, it can be easily figured out in which region earthquakes occur most often, and it is expected that it can be used in the development of a prediction system that can predict damage in the event of an earthquake in the future and minimize damage to property and people, as well as in earthquake data analysis and modeling research. Based on the findings of this study, the self-similar process is expected to help understand the patterns and statistical characteristics of seismic activities, group and classify similar seismic events, and be used for prediction of seismic activities, seismic risk assessments, and seismic engineering.

Development of a Slope Condition Analysis System using IoT Sensors and AI Camera (IoT 센서와 AI 카메라를 융합한 급경사지 상태 분석 시스템 개발)

  • Seungjoo Lee;Kiyen Jeong;Taehoon Lee;YoungSeok Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.2
    • /
    • pp.43-52
    • /
    • 2024
  • Recent abnormal climate conditions have increased the risk of slope collapses, which frequently result in significant loss of life and property due to the absence of early prediction and warning dissemination. In this paper, we develop a slope condition analysis system using IoT sensors and AI-based camera to assess the condition of slopes. To develop the system, we conducted hardware and firmware design for measurement sensors considering the ground conditions of slopes, designed AI-based image analysis algorithms, and developed prediction and warning solutions and systems. We aimed to minimize errors in sensor data through the integration of IoT sensor data and AI camera image analysis, ultimately enhancing the reliability of the data. Additionally, we evaluated the accuracy (reliability) by applying it to actual slopes. As a result, sensor measurement errors were maintained within 0.1°, and the data transmission rate exceeded 95%. Moreover, the AI-based image analysis system demonstrated nighttime partial recognition rates of over 99%, indicating excellent performance even in low-light conditions. Through this research, it is anticipated that the analysis of slope conditions and smart maintenance management in various fields of Social Overhead Capital (SOC) facilities can be applied.

Evaluation of Pretreatment Effect and Non-enzymatic Glucose Sensing Performance of Carbon Fibers Tow Electrode (탄소섬유 토우의 전처리 효과와 비효소적 포도당 센싱 성능 평가)

  • Min-Jung Song
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.13-18
    • /
    • 2024
  • To develop flexible electrode materials for wearable devices, we investigated the electrochemical characteristics of carbon fibers tow according to pretreatment. And an electrochemical non-enzymatic sensor was fabricated using glucose as a target. The carbon fibers tow was pretreated through desizing and activation processes, and activation was performed in two ways: chemical oxidation and electrochemical oxidation. Surface morphology of carbon fibers tow samples was observed by SEM and their electrochemical characteristics and sensing performance were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. Carbon fibers tow samples showed improved electrochemical properties such as reduced Ret, ΔEp, and increased Ip through pretreatment. And similar electrochemical properties were obtained with both activation methods. We selected electrochemically activated carbon fibers tow as the final electrode material for application of electrochemical sensor. The non-enzymatic glucose sensor based on this electrode has an enhanced sensitivity of 0.744 A/mM (in a linear range of 0.09899~3.75423 mM) and 0.330 mA/mM (3.75423~50 mM), respectively. Through this study, the possibility of using carbon fibers tow was confirmed as an electrode material. It is expected to be used as basic research for development of high-performance flexible electrode materials.

Electrochemical Properties of PAN-based Carbon Fibers Tow Electrode Using Organic/inorganic Nanocomposite and Its Application of Non-enzymatic Sensor (유/무기 나노 복합체를 이용한 PAN계 탄소섬유 토우 유연 전극의 전기화학적 특성 평가 및 비효소 전기화학 센서의 활용)

  • Min-Jung Song
    • Korean Chemical Engineering Research
    • /
    • v.62 no.3
    • /
    • pp.233-237
    • /
    • 2024
  • This study is about the fabrication of a flexible electrode based on PAN-based carbon fibers tow using organic/inorganic nanocomposite and its application of non-enzymatic sensor. The organic/inorganic nanocomposite was composed of the conductive polymer polyaniline (PANI) and the metal oxide CuO. And glucose was used as the target of the electrochemical sensor. Commercialized CFTs were pretreated through heat treatment for desizing and electrochemical oxidation for activation. This nanocomposite was sequentially synthesized on the pretreated CFT surface using electrochemical polymerization and electrochemical deposition. Finally, the CFT/PANI/CuO NPs electrode was obtained. The electrochemical properties and sensing performance of the CFT/PANI/CuO NPs electrode were analyzed using chronoamperometry (CA), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The sensitivity of the CFT/PANI/CuO NPs electrode was about 8.352 mA/mM (in a linear range of 0.445~6.674 mM) and 3.369 mA/mM (in a linear range of 6.674~50 mM), respectively. So, the CFT/PANI/CuO NPs electrode exhibited the enhanced sensing performances due to unique properties such as small peak potential separation, low electron transfer resistance, and large specific surface area.

The Preparation and Property of Dye Sensitized Solar Cells using TiO2 (TiO2를 이용한 염료감응형 태양전지의 제조 및 특성)

  • Kim, Gil-Sung;Kim, Young-Soon;Kim, Hyung-Il;Seo, Hyung-Kee;Yang, O-Bong;Shin, Hyung-Shik
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.179-186
    • /
    • 2006
  • Two types of $TiO_2$, nanotube and nanoparticle, were used for the mesoporous coatings by doctor blade technique followed by calcining at $450^{\circ}C$. The coatings were used as working materials for dye-sensitized solar cells (DSCs) later on and their photovoltaic characterization was carried out. The nanoparticle was synthesized from hydrogen titanate nanotube by hydrothermal treatment at $180^{\circ}C$ for 24 hr. The solar energy conversion efficiency (${\eta}$) of DSCs prepared by this nanoparticle reached 8.07% with $V_{OC}$ (open-circuit potential) of 0.81 V, $I_{SC}$ (short-circuit current) of $18.29mV/cm^2$, and FF (fill factor) of 66.95%, respectively. For the preparation of nanotube, the concentration of NaOH solution varied from 3 M to 5 M. In the case of DSCs fabricated with nanotubes from 3 M NaOH solution, the ${\eta}$ reached 6.19% with $V_{OC}$ of 0.77 V, $I_{SC}$ of $12.41mV/cm^2$, and FF of 64.49%, respectively. On the other hand, in the case of 5 M solution, the photovoltaic ${\eta}$ was decreased with 4.09% due to a loss of photocarriers. In conclusion, it is demonstrated that the solar energy conversion efficiency of DSCs made from $TiO_2$ nanoparticle showed best results among those under investigation.

Evaluation of the Curvature Reliability of Polymer Flexible Meta Electronic Devices based on Variations of the Electrical Properties (전기적 특성 변화를 통한 고분자 유연메타 전자소자의 곡률 안정성 평가)

  • Kwak, Ji-Youn;Jeong, Ji-Young;Ju, Jeong-A;Kwon, Ye-Pil;Kim, Si-Hoon;Choi, Doo-Sun;Je, Tae-Jin;Han, Jun Sae;Jeon, Eun-chae
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.268-276
    • /
    • 2021
  • As wireless communication devices become more common, interests in how to control the electromagnetic waves generated from the devices are increasing. One of the most commonly used electromagnetic wave control materials is magnetic one, but due to the features that make the product heavy and thick when applied to the product, it is difficult to use them in curved electronic devices. Therefore, a polymer flexible meta electronic device has been presented to sort out the problem, which is thin and can have various curvatures. However, it requires an additional evaluation of curvature reliability. In this study, we developed a method to predict electromagnetic wave control characteristics through the resistance/length of the conductive ink line patterns of polymer flexible meta electronic devices, which is inversely proportional to the electromagnetic wave control characteristics. As the radius of curvature decreased, the resistance/length increased, and there was little variations with the duration times of curvature. We also found that both permanent and recoverable changes along with the removal of curvature were occurred when the curvature was applied, and that the cause of these changes was newly created vertical cracks in the conductive ink line pattern due to the tensile stress applied by applying curvature.

Physical Property Analysis of Composite Electrodes with Different Active Material Sizes and Densities using 3D Structural Modeling (3차원 구조 모델링을 이용한 활물질 입자 크기 및 전극 밀도에 따른 복합 전극 내 물리적 특성 분석)

  • Yang, Seungwon;Park, Joonam;Byun, Seoungwoo;Kim, Nayeon;Ryou, Myung-Hyun;Lee, Yong Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.2
    • /
    • pp.39-46
    • /
    • 2020
  • Composite electrodes for rechargeable batteries generally consist of active material, electric conductor, and polymeric binder. And their composition and distribution within the composite electrode determine the electrochemical activity in the electrochemical systems. However, it is not easy to quantify the physical properties of composite electrodes themselves using conventional experimental analysis tools. So, 3D structural modeling and simulation can be an efficient design tool by looking into the contact areas between particles and electric conductivity within the composite electrode. In this study, while maintaining the composition (LiCoO2 : Super P Li® : Polyvinylidene Fluoride (PVdF) = 93 : 3 : 4 by wt%) and loading level (13 mg cm-2) of the composite electrode, the effects of LiCoO2 size (10 ㎛ and 20 ㎛) and electrode density (2.8 g cm-3, 3.0 g cm-3, 3.2 g cm-3, 3.5 g cm-3, 4.0 g cm-3) on the physical properties are investigated using a GeoDict software. With this tool, the composite electrode can be efficiently designed to optimize the contact area and electric conductivity.