• Title/Summary/Keyword: engineering property

Search Result 8,337, Processing Time 0.031 seconds

Research on anti-seismic property of new end plate bolt connections - Wave web girder-column joint

  • Jiang, Haotian;Li, Qingning;Yan, Lei;Han, Chun;Lu, Wei;Jiang, Weishan
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.45-61
    • /
    • 2016
  • The domestic and foreign scholars conducted many studies on mechanical properties of wave web steel beam and high-strength spiral stirrups confined concrete columns. Based on the previous research work, studies were conducted on the anti-seismic property of the end plate bolt connected wave web steel beam and high-strength spiral stirrups confined concrete column nodes applied with pre-tightening force. Four full-size node test models in two groups were designed for low-cycle repeated loading quasi-static test. Through observation of the stress, distortion, failure process and failure mode of node models, analysis was made on its load-carrying capacity, deformation performance and energy dissipation capacity, and the reliability of the new node was verified. The results showed that: under action of the beam-end stiffener, the plastic hinges on the end of wave web steel beam are displaced outward and played its role of energy dissipation capacity. The study results provided reliable theoretical basis for the engineering application of the new types of nodes.

Effects of Ca Addition on Grain Refinement and Mechanical Properties of AZ31 Magnesium Alloy (AZ31 마그네슘합금의 결정립 미세화 및 기계적 특성에 미치는 Ca 첨가의 영향)

  • Jin, Qing-Lin;Eom, Jeong-Pil;Lim, Su-Gun;Park, Won-Wook;You, Bong-Sun
    • Journal of Korea Foundry Society
    • /
    • v.23 no.5
    • /
    • pp.251-256
    • /
    • 2003
  • Effects of Ca addition on grain refinement, microstructure and mechanical properties of AZ31 Mg alloy were investigated. Due to Ca addition to Mg alloy (AZ31), the microstructure was refined, the quantity of $Mg_{17}Al_{12}$phase was reduced, and new $Al_2Ca$ phase was formed. The tensile property of AZ31 was increased with the minor addition of Ca, but was decreased rapidly over 0.2 wt.% of Ca content. The $Al_2Ca$ phase was considered to be detrimental to the mechanical property of AZ31 Mg alloy.

Investigation of cultivation and FAME composition isolated Phaeodactylum tricornutum from Youngheung island (영흥도에서 분리된 Phaeodactylum tricornutum의 증식 및 Monounsaturated fatty acid 관련 지방산 조성 분석)

  • Lee, SangMin;Cho, Yonghee;Shin, ong-Woo;Jeon, Hyonam;Ryu, YoungJin;Lim, Sang-Min;Lee, Choul-Gyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.47-52
    • /
    • 2014
  • Oxidation stability and cold fuid property are considered as the most important factors for determining biodiesel quality. Among the fatty acids, monounsaturated fatty acid satisfy both oxidation stability and cold flow property of biodiesel quality standards. Microalgae with high monounsaturated fatty acid contents is have some benefit for producing to produce biodiesels with satisfying quality standards. In this study, monounsaturated fatty acid contents of a isolated microalga from Youngheung island was analyzed. Phaeodactylum tricornutum was isolated by streaking, and growth rate and fatty acid composition of the algae were investigated. Total FAME contents were consisted of 26% of saturated fatty acids, 43% of monounsaturated fatty acids, and 18% of polyunsaturated fatty acids. The contents of monounsaturated fatty acid were especially high in the Phaeodactylum species. This result implies that the FAMEs from P. tricornutum may contribute to improve the oxidation stability and cold flow property of biodiesel.

Material Property-Estimate Technique Based on Natural Frequency for Updating Finite Element Model of Orthotropic Beams

  • Kim, Kookhyun;Park, Sungju;Lee, Sangjoong;Hwang, Seongjun;Kim, Sumin;Lee, Yonghee
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.481-488
    • /
    • 2020
  • Composite materialsuch as glass-fiber reinforced plastic and carbon-fiber reinforced plastic (CFRP) shows anisotropic property and have been widely used for structural members and outfitings of ships. The structural safety of composite structures has been generally evaluated via finite element analysis. This paper presents a technique for updating the finite element model of anisotropic beams or plates via natural frequencies. The finite element model updates involved a compensation process of anisotropic material properties, such as the elastic and shear moduli of orthotropic structural members. The technique adopted was based on a discrete genetic algorithm, which is an optimization technique. The cost function was adopted to assess the optimization problem, which consisted of the calculated and referenced low-order natural frequencies for the target structure. The optimization process was implemented with MATLAB, which includes the finite element updates and the corresponding natural frequency calculations with MSC/NASTRAN. Material properties of a virtual cantilevered orthotropic beam were estimated to verify the presented method and the results obtained were compared with the reference values. Furthermore, the technique was applied to a cantilevered CFRP beam to successfully estimate the unknown material properties.

Real 3D Property Integral Imaging NFT Using Optical Encryption

  • Lee, Jaehoon;Cho, Myungjin;Lee, Min-Chul
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.565-575
    • /
    • 2022
  • In this paper, we propose a non-fungible token (NFT) transaction method that can commercialize the real 3D property and make property sharing possible using the 3D reconstruction technique. In addition, our proposed method enhances the security of NFT copyright and metadata by using optical encryption. In general, a conventional NFT is used for 2D image proprietorial rights. To expand the scope of the use of tokens, many cryptocurrency industries are currently trying to apply tokens to real three-dimensional (3D) property. However, many token markets have an art copyright problem. Many tokens have been minted without considering copyrights. Therefore, tokenizing real property can cause significant social issues. In addition, there are not enough methods to mint 3D real property for NFT commercialization and sharing property tokens. Therefore, we propose a new token management technique to solve these problems using integral imaging and double random phase encryption. To show our system, we conduct a private NFT market using a test blockchain network that can demonstrate the whole NFT transaction process.

Developing a User Property Metadata to Support Cognitive and Emotional Product Design (인지·감성적 제품설계 지원을 위한 사용자 특성정보 메타데이터 구축)

  • Oh, Kyuhyup;Park, Kwang Il;Kim, Hee-Chan;Kim, Woo Ju;Lee, Soo-Hong;Ji, Young Gu;Jung, Jae-Yoon
    • The Journal of Society for e-Business Studies
    • /
    • v.21 no.4
    • /
    • pp.69-80
    • /
    • 2016
  • Cognitive and emotional product design is becoming crucial because the technology gap decreases more and more. Product design guidelines and the corresponding database are therefore needed to support sensing (e.g. sight, hearing, touch), cognition (e.g. attention, memory) and emotion (e.g. aesthetics, functionality) which users feel differently according to their genders and ages. The user property information which is extracted from various experiments can be used as critical criteria in product design and evaluation, and it is necessary to develop the integrated database of cognition and emotion where to store the user property information. In this research, we design the user property metadata for supporting cognitive and emotional product design and then develop a prototype system. The metadata is designed to reflect the classification of cognition and emotion by investigating and classifying the previous studies related to sensing, cognition and emotion. The user property information is designed in RDF (Resource Description Framework), and a prototype system is developed to store user property information of cognition and emotion based on the designed metadata.

Research Trends of High-entropy Alloys (고엔트로피 합금의 연구동향)

  • Park, Pureunsol;Lee, Ho Joon;Jo, Youngjun;Gu, Bonseung;Choi, Won June;Byun, Jongmin
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.515-527
    • /
    • 2019
  • High-entropy alloys (HEAs) are generally defined as solid solutions containing at least 5 constituent elements with concentrations between 5 and 35 atomic percent without the formation of intermetallic compounds. Currently, HEAs receive great attention as promising candidate materials for extreme environments due to their potentially desirable properties that result from their unique structural properties. In this review paper, we aim to introduce HEAs and explain their properties and related research by classifying them into three main categories, namely, mechanical properties, thermal properties, and electrochemical properties. Due to the high demand for structural materials in extreme environments, the mechanical properties of HEAs including strength, hardness, ductility, fatigue, and wear resistance are mainly described. Thermal and electrochemical properties, essential for the application of these alloys as structural materials, are also described.

Micronization of Ceramic Pigments for Digital Ink-Jet Printing Process (디지털 프린팅 공정을 위한 세라믹 안료의 미립화 거동 분석)

  • Lee, Ji-Hyeon;Hwang, Hae-Jin;Kwon, Jong-Woo;Kim, Jin-Ho;Hwang, Kwang-Taek;Han, Kyu-Sung
    • Korean Journal of Materials Research
    • /
    • v.27 no.2
    • /
    • pp.82-88
    • /
    • 2017
  • Ink-jet printing techniques with ceramic ink, which contains ceramic pigments as colorant, are in increasingly use in the ceramic industry. Generally, ceramic pigments that are produced by conventional method show diameters of several micrometers; these micrometer sized particles in the ink-jet printing process can cause undesirable behavior such as print head nozzle clogging. To prevent this problem, a particle size reduction process is required. In this study, CMYK (cyan, magenta, yellow, black) pigments were synthesized via solid state method. Each pigment particle was milled to submicron size by an attrition mill. The effects of micronizing on the morphology, mechanical property, crystal structure and color property of the CMYK ceramic pigments were investigated by field emission scanning electron microscopy (FE-SEM), particle size analysis (PSA), X-ray diffraction (XRD) and CIE $L^{\ast}a^{\ast}b^{\ast}$.

Properties of impact modifier reinforced PPS/MWCNT Nanocomposite (충격보강제가 보강된 PPS (polyphenylene sulfide)/MWCNT (multi-walled carbon nanotube) 나노복합체의 물성연구)

  • Park, Ji Soo;Kim, Seung Beom;Nam, Byeong Uk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.75-80
    • /
    • 2012
  • Polymer composites which have electrical properties have been studied in various industries. The Multi-walled carbon nanotube (MWCNT) are thought to be reinforcements for polymers because of their high aspect ratio and specially mechanical, thermal and electrical properties. We introduced MWCNT and impact modifier in order to improve thermal and mechanical properties of Polyphenylene sulfide (PPS) and give electric characteristic to PPS. The thermal properties were investigated by Differential scanning calorimeter (DSC) and Thermogravimetric analysis (TGA). The morphology, mechanical properties and electrical characteristic were performed by Field emission scanning electron microscopy (FE-SEM), Izod impact tester and surface resistance meter. As a result, we could find that the PPS/MWCNT composites have high conductivity and good mechanical properties than neat PPS resin.

Experimental study on deformation and strength property of compacted loess

  • Mei, Yuan;Hu, Chang-Ming;Yuan, Yi-Li;Wang, Xue-Yan;Zhao, Nan
    • Geomechanics and Engineering
    • /
    • v.11 no.1
    • /
    • pp.161-175
    • /
    • 2016
  • A series of experimental studies are conducted on the deformation and shear strength property of compacted loess. The results reveal that the relationships of both the initial moisture content (w) and the initial degree of compaction (K) of compacted loess with cohesion (w) and the angle of internal friction (${\varphi}$) are linear. The relationship between the secant modulus ($E_{soi}$) and K is also linear. The relationship between $E_{soi}$ and w can be fitted well by a second-order polynomial. Further, when the influences of w and K are ignored, the relationship between the confined compression strain (${\varepsilon}$) and vertical pressure (p) can be expressed by a formula. A correction formula for the deformation of compacted loess caused by a change in w and K is derived on the basis of the study results.