DOI QR코드

DOI QR Code

Research Trends of High-entropy Alloys

고엔트로피 합금의 연구동향

  • Park, Pureunsol (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Lee, Ho Joon (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Jo, Youngjun (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Gu, Bonseung (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Choi, Won June (Department of Materials Science and Engineering, Hanyang University) ;
  • Byun, Jongmin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 박푸른솔 (서울과학기술대학교 신소재공학과) ;
  • 이호준 (서울과학기술대학교 신소재공학과) ;
  • 조영준 (서울과학기술대학교 신소재공학과) ;
  • 구본승 (서울과학기술대학교 신소재공학과) ;
  • 최원준 (한양대학교 신소재공학과) ;
  • 변종민 (서울과학기술대학교 신소재공학과)
  • Received : 2019.11.27
  • Accepted : 2019.12.13
  • Published : 2019.12.28

Abstract

High-entropy alloys (HEAs) are generally defined as solid solutions containing at least 5 constituent elements with concentrations between 5 and 35 atomic percent without the formation of intermetallic compounds. Currently, HEAs receive great attention as promising candidate materials for extreme environments due to their potentially desirable properties that result from their unique structural properties. In this review paper, we aim to introduce HEAs and explain their properties and related research by classifying them into three main categories, namely, mechanical properties, thermal properties, and electrochemical properties. Due to the high demand for structural materials in extreme environments, the mechanical properties of HEAs including strength, hardness, ductility, fatigue, and wear resistance are mainly described. Thermal and electrochemical properties, essential for the application of these alloys as structural materials, are also described.

Keywords

References

  1. O. N. Senkov, G. B. Wilks, D. B. Miracle, C. P. Chuang and P. K. Liaw: Intermetallic, 18 (2010) 1758. https://doi.org/10.1016/j.intermet.2010.05.014
  2. A. Zhang, J. Han, B. Su and J. Meng: J. Alloys Compd., 725 (2017) 700. https://doi.org/10.1016/j.jallcom.2017.07.197
  3. S. Q. Xia, X. Yang, T. F. Yang, S. Liu and Y. Zhang: JOM, 67 (2015) 2340. https://doi.org/10.1007/s11837-015-1568-4
  4. C.-H. Chang, M. S. Titus and J.-W. Yeh: Adv. Eng. Mater., 20 (2018) 1700948. https://doi.org/10.1002/adem.201700948
  5. F. Granberg, K. Nordlund, M. W. Ullah, K. Jin, C. Lu, H. Bei, L. M. Wang, F. Djurabekova, W. J. Weber and Y. Zhang: Phys. Rev. Lett., 116 (2016) 135504. https://doi.org/10.1103/PhysRevLett.116.135504
  6. J.-Y. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau and S.-Y. Chang: Adv. Eng. Mater., 6 (2004) 299. https://doi.org/10.1002/adem.200300567
  7. C. R. LaRosa, M. Shih, C. Varvenne and M. Ghazisaeidi: Mater. Charact., 151 (2019) 310. https://doi.org/10.1016/j.matchar.2019.02.034
  8. Z.-S. Nong, Y.-N. Lei and J.-C. Zhu: Intermetallics, 101 (2018) 144. https://doi.org/10.1016/j.intermet.2018.07.017
  9. M. G. Poletti, G. Fiore, F. Gili, D. Mangherini and L. Battezzati: Mater. Des., 115 (2017) 247. https://doi.org/10.1016/j.matdes.2016.11.027
  10. Z. Zhang, E. Axinte, W. Ge, C. Shang and Y. Wang: Mater. Des., 108 (2016) 106. https://doi.org/10.1016/j.matdes.2016.06.100
  11. A. Poulia, E. Georgatis, A. Lekatou and A. E. Karantzalis: Int. J. Refract. Met. Hard Mater., 57 (2016) 50. https://doi.org/10.1016/j.ijrmhm.2016.02.006
  12. B. Cantor, I. T. H. Chang, P. Knight and A. J. B. Vincent: Mater. Sci. Eng. A, 375-377 (2004) 213. https://doi.org/10.1016/j.msea.2003.10.257
  13. A. Takeuchi and A. Inoue: Mater. Trans., 41 (2000) 1372. https://doi.org/10.2320/matertrans1989.41.1372
  14. F. Otto, Y. Yang, H. Bei and E. P. George: Acta Mater., 61 (2013) 2628. https://doi.org/10.1016/j.actamat.2013.01.042
  15. S. J. Sun, Y. Z. Tian, H. R. Lin, X. G. Dong, Y. H. Wang, Z. J. Wang and Z. F. Zhang: J. Alloys Compd., 806 (2019) 992. https://doi.org/10.1016/j.jallcom.2019.07.357
  16. F. Otto, A. Dlouhy, K. G. Pradeep, M. Kubenova, D. Raabe, G. Eggeler and E. P. George: Acta Mater., 112 (2016) 40. https://doi.org/10.1016/j.actamat.2016.04.005
  17. M. Tian, C. Wu, Y. Liu, H. Peng, J. Wang and X. Su: J. Alloys Compd., 811 (2019) 152025. https://doi.org/10.1016/j.jallcom.2019.152025
  18. A. Radon, P. Wlodarczyk, L. Hawelek, M. Kadziolka-Gawel, P. Gebara, R. Nowosielski and R. Babilas: J. Alloys Compd., 763 (2018) 141. https://doi.org/10.1016/j.jallcom.2018.05.242
  19. Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen and P. K Liaw: Adv. Eng. Mater., 10 (2008) 534. https://doi.org/10.1002/adem.200700240
  20. C. Xiang, Z. M. Zhang, H. M. Fu, E.-H. Han, H. F. Zhang and J. Q. Wang: Intermetaillics, 114 (2019) 106599. https://doi.org/10.1016/j.intermet.2019.106599
  21. F. Maresca and W. A. Curtin: Acta Mater., 182 (2020) 144. https://doi.org/10.1016/j.actamat.2019.10.007
  22. G. Bracq, M. L. Brocq, C. Varvenne, L. Perriere, W. A. Curtin, J.-M. Joubert and I. Guillot: Acta Mater., 177 (2019) 266. https://doi.org/10.1016/j.actamat.2019.06.050
  23. J.-W. Yeh, S.-Y. Chang, Y.-D. Hong, S.-K. Chen and S.-J. Lin: Mater. Chem. Phys., 103 (2007) 41. https://doi.org/10.1016/j.matchemphys.2007.01.003
  24. S. Ranganathan: Curr. Sci., 85 (2003) 1404.
  25. T. Yang, S. Xia, S. Liu, C. Wang, S. Liu, Y. Zhang, J. Xue, S. Yan and Y. Wang: Mater. Sci. Eng. A, 648 (2015) 15. https://doi.org/10.1016/j.msea.2015.09.034
  26. J. Joseph, N. Stanford, P. Hodgson and D. M. Fabijanic: J. Alloys Compd., 726 (2017) 885. https://doi.org/10.1016/j.jallcom.2017.08.067
  27. S. Guo, C. Ng, J. Lu and C. T. Liu: J. Appl. Phys., 109 (2011) 103505. https://doi.org/10.1063/1.3587228
  28. W. Fang, H. Yu, R. Chang, X. Zhang, P. Ji, B. Liu, J. Li, X. Qu, Y. Liu and F. Yin: Mater. Chem. Phys., 238 (2019) 121897. https://doi.org/10.1016/j.matchemphys.2019.121897
  29. M.-H. Tsai and J.-W. Yeh: Mater. Res. Lett., 2 (2014) 107. https://doi.org/10.1080/21663831.2014.912690
  30. C.-J. Tong, M.-R. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T-T. Shun and S.-Y. Chang: Metall. Mater. Trans. A, 36 (2005) 1263. https://doi.org/10.1007/s11661-005-0218-9
  31. M.-H. Chuang, M.-H. Tsai, W.-R. Wang, S.-J. Lin and J.-W. Yeh: Acta Mater., 59 (2011) 6308. https://doi.org/10.1016/j.actamat.2011.06.041
  32. Z. Tang, T. Yuan, C.-W. Tsai, J.-W. Yeh, C. D. Lundin and P. K. Liaw: Acta Mater., 99 (2015) 247. https://doi.org/10.1016/j.actamat.2015.07.004
  33. M. A. Hemphill, T. Yuan, G. Y. Wang, J. W. Yeh, C. W. Tsai, A. Chuang and P. K. Liaw: Acta Mater., 60 (2012) 5723. https://doi.org/10.1016/j.actamat.2012.06.046
  34. C.-W. Tsai, Y.-L. Chen, M.-H. Tsai, J.-W. Yeh, T.-T. Shun and S.-K. Chen: J Alloys Compd., 486 (2009) 427. https://doi.org/10.1016/j.jallcom.2009.06.182
  35. B. Zhang, Y. Duan, X. Wen, G. Ma, T. Wang, X. Dong, H. Zhang, N. Jia and Y. Zeng: J. Alloys Compd., 790 (2019) 179. https://doi.org/10.1016/j.jallcom.2019.03.152
  36. D. G. Shaysultanov, G. A. Salishchev, Y. V. Ivanisenko, S. V. Zherebtsov, M. A. Tikhonovsky and N. D. Stepanov: J. Alloys Compd., 705 (2017) 756. https://doi.org/10.1016/j.jallcom.2017.02.211
  37. D. Wei, X. Li, J. Jiang, W. Heng, Y. Koizumi, W.-M. Choi, B.-J. Lee, H. S. Kim, H. Kato and A. Chiba: Scr. Mater., 165 (2019) 39. https://doi.org/10.1016/j.scriptamat.2019.02.018
  38. P. Yu, R. Feng, J. Du, S. Shuhei, J.-P. Chou, B. Chen, Y.-C. Lo, P. K. Liaw, S. Ogata and A. Hu: Acta Mater., 181 (2019) 491. https://doi.org/10.1016/j.actamat.2019.10.012
  39. Y. Zhang, Z. Moumni, Y. You, W. Zhang, J. Zhu and G. Anlas: Int. J. Plast., 115 (2019) 307. https://doi.org/10.1016/j.ijplas.2018.12.003
  40. Y. T. Zhu, X. Z. Liao and X. L. Wu: Prog. Mater. Sci., 57 (2012) 1. https://doi.org/10.1016/j.pmatsci.2011.05.001
  41. L. Remy and A. Pineau: Mater. Sci. Eng., 28 (1977) 99. https://doi.org/10.1016/0025-5416(77)90093-3
  42. J. W. Christian and S. Mahajan: Prog. Mater. Sci., 39 (1995) 1. https://doi.org/10.1016/0079-6425(94)00007-7
  43. A. J. Zaddach, C. Niu, C. C. Koch and D. L. Irving: JOM, 65 (2013) 1780. https://doi.org/10.1007/s11837-013-0771-4
  44. J. K. Jung, O. Y. Lee, Y. K. Park, D. E. Kim, K. G. Jin, S. K. Kim and K. H. Song: Korean J. Met. Mater., 46 (2008) 627.
  45. Y. Deng, C. C. Tasan, K. G. Pradeep, H. Springer, A. Kostka and D. Raabe: Acta Mater., 94 (2015) 124. https://doi.org/10.1016/j.actamat.2015.04.014
  46. C. C. Tasan, Y. Deng, K. G. Pradeep, M. J. Yao, H. Springer and D. Raabe: JOM, 66 (2014) 1993. https://doi.org/10.1007/s11837-014-1133-6
  47. Z. Wu, H. Bei, F. Otto, G. M. Pharr and E. P. George: Intermetallics, 46 (2014) 131. https://doi.org/10.1016/j.intermet.2013.10.024
  48. J. R. Davis: ASM Specialty Handbook 'Stainless Steels'. ASM International, Materials Park (1994) 51.
  49. B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George and R. O. Ritchie: Science, 345 (2014) 1153. https://doi.org/10.1126/science.1254581
  50. Q. Fang, Y. Chen, J. Li, C. Jiang, B. Liu, Y. Liu and P. K. Liaw: Int. J. Plast., 114 (2019) 161. https://doi.org/10.1016/j.ijplas.2018.10.014
  51. S. Y. Lee and B. C. Hwang: Korean J. Mater. Res. 26 (2016) 281. https://doi.org/10.3740/MRSK.2016.26.5.281
  52. H.-P. Chou, Y.-S. Chang, S.-K. Chen and J.-W. Yeh: Mater. Sci. Eng. B, 163 (2009) 184. https://doi.org/10.1016/j.mseb.2009.05.024
  53. H. Takayama: Z. Phys. A. At. Nucl., 263 (1973) 329.
  54. G. Laplanche, P. Gadaud, O. Horst, F. Otto, G. Eggeler and E. P. George: J. Alloys Compd., 623 (2015) 348. https://doi.org/10.1016/j.jallcom.2014.11.061
  55. F. Otto, A. Dlouhy, Ch. Somsen, H. Bei, G. Eggeler and E. P. George: Acta Mater., 61 (2013) 5743. https://doi.org/10.1016/j.actamat.2013.06.018
  56. O. N. Senkov, S. V. Senkova, D. M. Dimiduk, C. Woodward and D. B. Miracle: J. Mater. Sci., 47 (2012) 6522. https://doi.org/10.1007/s10853-012-6582-0
  57. B. Gorr, M. Azim, H.-J. Christ, T. Mueller, D. Schliephake and M. Heilmaier: J. Alloys Compd., 624 (2015) 270. https://doi.org/10.1016/j.jallcom.2014.11.012
  58. T. M. Butler and M. L. Weaver: J. Alloys Compd., 674 (2016) 229. https://doi.org/10.1016/j.jallcom.2016.02.257
  59. C. M. Liu, H. M. Wang, S. Q. Zhang, H. B. Tang and A. L. Zhang: J. Alloys Compd., 583 (2014) 162. https://doi.org/10.1016/j.jallcom.2013.08.102
  60. S. S. Nene, M. Frank, K. Liu, S. Sinha, R. S. Mishra, B. A. McWilliams and K. C. Cho: Scr. Mater., 166 (2019) 168. https://doi.org/10.1016/j.scriptamat.2019.03.028
  61. ASTM G102-89, Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical measurements.
  62. H. Zhang, Y. Pan and Y.-Z. He: Mater. Des., 32 (2011) 1910. https://doi.org/10.1016/j.matdes.2010.12.001
  63. X.-W. Qiu, Y.-P. Zhang, L. He and C.-G. Liu: J. Alloys Compd., 549 (2013) 195. https://doi.org/10.1016/j.jallcom.2012.09.091
  64. C. L. Wu, S. Zhang, C. H. Zhang, H. Zhang and S. Y. Dong: J. Alloys Compd., 698 (2017) 761. https://doi.org/10.1016/j.jallcom.2016.12.196