• Title/Summary/Keyword: engineering problem

Search Result 21,261, Processing Time 0.042 seconds

A Simulated Annealing Algorithm for the Optimal Reliability Design Problem of a Series System with Multiple Component Choices (다중 부품선택이 존재하는 직렬구조 시스템의 최적 신뢰성설계를 위한 시뮬레이티드 어닐링 알고리듬)

  • Kim, Ho-Gyun;Bae, Chang-Ok;Paik, Chun-Hyun
    • IE interfaces
    • /
    • v.17 no.spc
    • /
    • pp.69-78
    • /
    • 2004
  • This paper presents a simulated algorithm(SA) for the optimal reliability design problem of a series system with multiple component choices incorporated at each subsystem. The objective of the problem is to maximize the system reliability while satisfying some constraint on system budget. The problem is formulated as a nonlinear binary integer programming problem and characterized as an NP-hard problem. The SA algorithm is developed by introducing some solution-improvements methods. Numerical examples are tested and the results are compared. The results have demonstrated the efficiency and the effectiveness of the proposed SA algorithm.

A Hybrid Genetic Algorithm for the Location-Routing Problem with Simultaneous Pickup and Delivery

  • Karaoglan, Ismail;Altiparmak, Fulya
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.1
    • /
    • pp.24-33
    • /
    • 2011
  • In this paper, we consider the Location-Routing Problem with simultaneous pickup and delivery (LRPSPD) which is a general case of the location-routing problem. The LRPSPD is defined as finding locations of the depots and designing vehicle routes in such a way that pickup and delivery demands of each customer must be performed with same vehicle and the overall cost is minimized. Since the LRPSPD is an NP-hard problem, we propose a hybrid heuristic approach based on genetic algorithms (GA) and simulated annealing (SA) to solve the problem. To evaluate the performance of the proposed approach, we conduct an experimental study and compare its results with those obtained by a branch-and-cut algorithm on a set of instances derived from the literature. Computational results indicate that the proposed hybrid algorithm is able to find optimal or very good quality solutions in a reasonable computation time.

Approximation of reliability constraints by estimating quantile functions

  • Ching, Jianye;Hsu, Wei-Chi
    • Structural Engineering and Mechanics
    • /
    • v.32 no.1
    • /
    • pp.127-145
    • /
    • 2009
  • A novel approach is proposed to effectively estimate the quantile functions of normalized performance indices of reliability constraints in a reliability-based optimization (RBO) problem. These quantile functions are not only estimated as functions of exceedance probabilities but also as functions of the design variables of the target RBO problem. Once these quantile functions are obtained, all reliability constraints in the target RBO problem can be transformed into non-probabilistic ordinary ones, and the RBO problem can be solved as if it is an ordinary optimization problem. Two numerical examples are investigated to verify the proposed novel approach. The results show that the approach may be capable of finding approximate solutions that are close to the actual solution of the target RBO problem.

The Efficient Computation Method of Two-commodity Network Flow Problem Using TSP (판매원 문제를 이용한 2-상품 네트워크 흐름 문제의 효율적인 계산방법)

  • Hwang, In-Keuk;Park, Dong-Jin;Yoon, Kwang-Sik
    • Journal of Korean Society of Rural Planning
    • /
    • v.5 no.1 s.9
    • /
    • pp.20-25
    • /
    • 1999
  • Our interest in this paper is in the efficient computation of a good low bound for the traveling salesman problem and is in the application of a network problem in agriculture. We base our approach on a relatively new formulation of the TSP as a two-commodity network flow problem. By assigning Lagrangian multipliers to certain constraints and relaxing them, the problem separates into two single-commodity network flow problems and an assignment problem, for which efficient algorithms are available.

  • PDF

Control system design for a manipulator under parameter perturbation

  • Shimomoto, Y.;Kisu, H.;Ishimatsu, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.346-349
    • /
    • 1994
  • This paper is concerned with a motion control of a manipulator under parametric uncertainties and external disturbances. The parametric uncertainties are regarded as internally generated disturbances in the manipulator. Based on this idea, we formulate a model reference control problem with desired disturbance attenuation. The solution of this control problem not only reduces the worst-case effect on tracking error due to internal and external disturbances (combined disturbances) as much as possible, but also achieve optimal tracking when perturbations are absent. In order to solve the control problem which is formulated in this paper we reduce it to a constrained minmax cost control problem. A differential game theory is used to treat this constrained minmax cost control problem. The differential game theory leads to a sufficient condition for the global solvability of the model reference control problem with desired disturbance attenuation.

  • PDF

Unifying Method for Computing the Circumcircles of Three Circles

  • Kim, Deok-Soo;Kim, Dong-Uk;Sugihara, Kokichi
    • International Journal of CAD/CAM
    • /
    • v.2 no.1
    • /
    • pp.45-54
    • /
    • 2002
  • Given a set of three generator circles in a plane, we want to find a circumcircle of these generators. This problem is a part of well-known Apollonius' $10^{th}$ Problem and is frequently encountered in various geometric computations such as the Voronoi diagram for circles. It turns out that this seemingly trivial problem is not at all easy to solve in a general setting. In addition, there can be several degenerate configurations of the generators. For example, there may not exist any circumcircle, or there could be one or two circumcircle(s) depending on the generator configuration. Sometimes, a circumcircle itself may degenerate to a line. We show that the problem can be reduced to a point location problem among the regions bounded by two lines and two transformed circles via $M{\ddot{o}}bius$ transformations in a complex space. The presented algorithm is simple and the required computation is negligible. In addition, several degenerate cases are all incorporated into a unified framework.

An Optimization Algorithm for The Pickup and Delivery Problem With Time Windows (동일경로 제약을 갖는 집배송 차량 경로 수립 문제의 최적화 해법)

  • Kang, Ja-Young;Zang, Hee-Jeong;Kang, Jang-Ha;Park, Sung-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.1
    • /
    • pp.33-43
    • /
    • 2007
  • The pickup and delivery problem with time windows generally involves the construction of optimal routeswhich satisfy a set of transportation requests under pairing, precedence, time window, vehicle capacity, andavailability constraints. In this paper, we added some constraints to the problem and adopted an objectivefunction based on number of used vehicles, total travel distance and total schedule duration to consider morerealistic problems. A branch and price algohthm for the problem is proposed and an enumeration method is usedfor the subproblems. The algorithm was tested on randomly generated instances and computational results werereported.

The Confinement Problem: 40 Years Later

  • Crowell, Alex;Ng, Beng Heng;Fernandes, Earlence;Prakash, Atul
    • Journal of Information Processing Systems
    • /
    • v.9 no.2
    • /
    • pp.189-204
    • /
    • 2013
  • The confinement problem was first noted four decades ago. Since then, a huge amount of efforts have been spent on defining and mitigating the problem. The evolution of technologies from traditional operating systems to mobile and cloud computing brings about new security challenges. It is perhaps timely that we review the work that has been done. We discuss the foundational principles from classical works, as well as the efforts towards solving the confinement problem in three domains: operating systems, mobile computing, and cloud computing. While common issues exist across all three domains, unique challenges arise for each of them, which we discuss.

Design Methodologies for Reliable Clock Networks

  • Joo, Deokjin;Kang, Minseok;Kim, Taewhan
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.4
    • /
    • pp.257-266
    • /
    • 2012
  • This paper overviews clock design problems related to the circuit reliability in deep submicron design technology. The topics include the clock polarity assignment problem for reducing peak power/ground noise, clock mesh network design problem for tolerating clock delay variation, electromagnetic interference aware clock optimization problem, adjustable delay buffer allocation and assignment problem to support multiple voltage mode designs, and the state encoding problem for reducing peak current in sequential elements. The last topic belongs to finite state machine (FSM) design and is not directly related to the clock design, but it can be viewed that reducing noise at the sequential elements driven by clock signal is contained in the spectrum of reliable circuit design from the clock source down to sequential elements.

Optimization of Fuzzy Car Controller Using Genetic Algorithm

  • Kim, Bong-Gi;Song, Jin-Kook;Shin, Chang-Doon
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.2
    • /
    • pp.222-227
    • /
    • 2008
  • The important problem in designing a Fuzzy Logic Controller(FLC) is generation of fuzzy control rules and it is usually the case that they are given by human experts of the problem domain. However, it is difficult to find an well-trained expert to any given problem. In this paper, I describes an application of genetic algorithm, a well-known global search algorithm to automatic generation of fuzzy control rules for FLC design. Fuzzy rules are automatically generated by evolving initially given fuzzy rules and membership functions associated fuzzy linguistic terms. Using genetic algorithm efficient fuzzy rules can be generated without any prior knowledge about the domain problem. In addition expert knowledge can be easily incorporated into rule generation for performance enhancement. We experimented genetic algorithm with a non-trivial vehicle controling problem. Our experimental results showed that genetic algorithm is efficient for designing any complex control system and the resulting system is robust.