• Title/Summary/Keyword: engineering optimization

Search Result 11,061, Processing Time 0.034 seconds

Optimum Design of the Spatial Structures using the TABU Algorithm (TABU 알고리즘을 이용한 대공간 구조물의 최적설계)

  • Cho Yong-Won;Lee Sang-Ju;Han Sang-Eul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.273-280
    • /
    • 2005
  • The design of structural engineering optimization is to minimize the cost. This problem has many objective functions formulating section and shape as a function of the included discrete variables. simulated annealing, genetic algerian and TABU algerian are searching methods for optimum values. The object of this reserch Is comparing the result of TABU algorithm, and verifying the efficiency of TABU algorithm in structural optimization design field. For the purpose, this study used a solid truss of 25 elements having 10 nodes, and size optimization for each constraint and load condition of Geodesic ome, and shape optimization of Cable Dome for verifying spatial structures by the application of TABU algorithm.

  • PDF

Optimal Trajectory Modeling of Humanoid Robot for Argentina Tango Walking

  • Ahn, Doo-Sung
    • Journal of Power System Engineering
    • /
    • v.21 no.5
    • /
    • pp.41-47
    • /
    • 2017
  • To implement Argentina tango dancer-like walking of the humanoid robot, a new trajectory generation scheme based on particle swarm optimization of the blending polynomial is presented. Firstly, the characteristics of Argentina tango walking are derived from observation of tango dance. Secondly, these are reflected in walking pose conditions and cost functions of particle swarm optimization to determine the coefficients of blending polynomial. For the stability of biped walking, zero moment point and reference trajectory of swing foot are also included in cost function. Thirdly, after tango walking cycle is divided into 3 stages with 2 postures, optimal trajectories of ankles, knees and hip of lower body, which include 6 sagittal and 4 coronal angles, are derived in consequence of optimization. Finally, the feasibility of the proposed scheme is validated by simulating biped walking of humanoid robot with derived trajectories under the 3D Simscape environment.

A Practical Approach for Optimal Design of Pipe Diameters in Pipe Network (배관망에서의 파이프 직경 최적설계에 대한 실용적 해법)

  • Choi Chang-Yong;Ko Sang-Cheol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.8
    • /
    • pp.635-640
    • /
    • 2006
  • An optimizer has been applied for the optimal design of pipe diameters in the pipe flow network problems. Pipe network flow analysis, which is developed separately, is performed within the interface for the optimization algorithm. A pipe network is chosen for the test, and optimizer GenOpt is applied with Holder-Mead-O'Niell's simplex algorithm after solving the network flow problem by the Newton-Raphson method. As a result, optimally do-signed pipe diameters are successfully obtained which minimize the total design cost. Design cost of pipe flow network can be considered as the sum of pipe installation cost and pump operation cost. In this study, a practical and efficient solution method for the pipe network optimization is presented. Test system is solved for the demonstration of the present optimization technique.

Flexible Eigenstructure Assignment : An Optimization Approach (유연 고유구조 지정기법 : 최적화 접근법)

  • Choe, Jae-Won;Kim, Sin-Jong;Seo, Yeong-Bong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.8
    • /
    • pp.641-646
    • /
    • 2001
  • Eigenstructure assignment is a typical method with the capability of consideration of the time-domain specifications in designing a linear control system. In this paper, we propose a new method for eigenstructure to achieve desired eigenvectors more precisely than with the conventional method. In the proposed method, the conventional eigenstructure assignment problem is interpreted as a constrained optimization one, and it converted into an unconstrained optimization problem to deal with the problem easily. Numerical examples are presented to illustrate the proposed flexible eigenstructure assignment method.

  • PDF

Application of the Infinite Dimensional Optimization to Marine Propellers and Its Mathematical Uniqueness (무한차원최적화의 추진기에의 응용과 그의 수학적 유일성 고찰)

  • Jang, Taek-S.;Hong, Sa-Y.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.231-236
    • /
    • 2002
  • By using the infinite dimensional optimization[Jang and Kinoshita(2000)]. which is based on the Hilbert space theory, optimal marine propellers are studied. The mathematical uniqueness for the optimized propeller is shown in this study. As a numerical example, the MAU type propeller is considered and used as the initial guess for the optimization method. The numerical results for an optimal marine propeller is illustrated for the pitch distribution.

  • PDF

A Study on Cutting Path Optimization Using Genetic Algorithm (유전자 알고리즘을 이용한 부재 절단 경로 최적화)

  • Park, Ju-Yong;Seo, Jeong-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.67-70
    • /
    • 2009
  • Nesting and cutting path optimization have a great effect on the improvement of productivity in many industries such as shipbuilding, automotive, clothing, and so on. However, few researches have been carried out for the optimization of a cutting path algorithm. This study proposed a new method for cutting optimization using gravity center of cutting pieces and a genetic algorithm. The proposed method was tested for a sample plate including many different shapes of cutting pieces and compared to 2 other conventional methods. The test results showed that the new method had the shortest cutting path and the best effectiveness among the 3 methods.

Trajectory Optimization for Underwater Gliders Considering Depth Constraints (수심 제한을 고려한 수중 글라이더 경로 최적화)

  • Yoon, Sukmin;Kim, Jinwhan
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.560-565
    • /
    • 2014
  • In this study, the problem of trajectory optimization for underwater gliders considering depth constraints is discussed. Typically, underwater gliders are controlled to dive and climb in a saw-tooth pattern at constant gliding angles. This approach is effective and close to optimal for deep water applications. However, the optimal path deviates from the saw-tooth path in shallow water conditions. This study focuses on finding more efficient gliding paths that can minimize the traverse time in the horizontal plane when the water depth is limited. The trajectory optimization problem is formulated into a minimum time control problem with inequality path constraints and hydrodynamic drag effects. A numerical approach based on the pseudo-spectral method is adopted as a solution approach, and the simulation results are presented.

Optimization Methodology of Multiple Air Hole Effects in Substrate Integrated Waveguide Applications

  • Kim, Jin-Yang;Chun, Dong-Wan;Ryu, Christopher Jayun;Lee, Hai-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.3
    • /
    • pp.160-168
    • /
    • 2018
  • A wide spectrum of potential applications using substrate integrated waveguide (SIW) technologies in conjunction with air hole regions is introduced, and an efficient optimization methodology to cope with the multiple air hole effect in SIW applications is proposed. The methodology adopts a genetic algorithm to obtain optimum air hole dimensions for the specific propagation constant that can be accurately calculated using the recursive and closed form equations presented. The optimization results are evaluated by designing an SIW bandpass filter, and they show excellent performance. The optimization methodology using the proposed equations is effective in performance enhancement for the purposes of low loss and broadband SIW applications.

A Comparative Study of Operating Angle Optimization of Switched Reluctance Motor with Robust Speed Controller using PSO and GA

  • Prabhu, V. Vasan;Rajini, V.;Balaji, M.;Prabhu, V.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.551-559
    • /
    • 2015
  • This paper's focus is in reducing the torque ripple and increasing the average torque by optimizing switching angles of 8/6 switched reluctance motor while implementing a robust speed controller in the outer loop. The mathematical model of the machine is developed and it is simulated using MATLAB/Simulink. An objective function and constraints are formulated and Optimum turn-on and turn-off angles are determined using Particle swarm optimization and Genetic Algorithm techniques. The novelty of this paper lies in implementing sliding mode speed controller with optimized angles. The results from both the optimization techniques are then compared with initial angles with one of them clearly being the better option. Speed response is compared with PID controller.

A Novel Efficiency Optimization Strategy of IPMSM for Pump Applications

  • Zhou, Guangxu;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.515-520
    • /
    • 2009
  • According to the operating characteristics of pump applications, they should exhibit high efficiency and energy saving capabilities throughout the whole operating process. A novel efficiency optimization control strategy is presented here to meet the high efficiency demand of a variable speed Permanent Magnet Synchronous Motor (PMSM). The core of this strategy is the excellent integration of mended maximum torque to the current control algorithm, based on the losses model during the dynamic and the grade search method with changed step by fuzzy logic during the steady. The performance experiments for the control system of a variable speed high efficiency PMSM have been completed. The test results verified that the system can reliably operate with a different control strategy during dynamic and steady operation, and the system exhibits better performance when using the efficiency-optimization control.