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I. INTRODUCTION 

Over the last decade, intensive studies in various substrate 

integrated waveguide (SIW) application areas have been 

conducted because of the benefits of this technology, such as 

high quality factor, high power-handling capability, high 

density integration, low cost, and easy fabrication. These 

benefits have successfully demonstrated their potential to 

enhance wireless communication performance [1–9]. These 

studies were possible thanks to a well-established theory of 

SIW that gives a highly accurate transfer equation for ob-

taining an equivalent modeling to conventional rectangular 

waveguide (RW) filled with dielectric material [10–14].  

It should be noted that SIW can be a more attractive solu-

tion for designs below 6 GHz with compact size, exploiting 

the merit of the conventional RW [6, 7]. 

On the other hand, the explosive demand for cellular data 

requires increased capacity and spectral efficiency of wireless 

communication networks, which in turn is leading and stim-

ulating network evolution to 5G systems that will require 

additional high frequency bands above 6 GHz [15]. In par-

ticular, millimeter-wave (mm-wave) around and above 30 

GHz is a promising candidate, with extensive wide band-

width supporting the ever-growing data rates needed [15]. In 

order to achieve the required performance using the mm-

wave (as well as below 6 GHz), massive MIMO and multi-

beam antenna systems should be developed and deployed; 

low loss interconnections/filters, broadband phase shifters, 

and massive array antennas are essential technologies. There-

fore, the SIW described above will be one of the core solu-

tions for meeting these requirements [16, 17]. 

Low loss components such as transmission lines, filters, 

and broadband phase shifters based on SIW technology have 

been proposed, along with their structure and fabrication 
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process [18–23]. The SIW structures proposed in previous 

studies have introduced an air-filled region by partially elim-

inating substrate to change the dispersion characteristics (i.e., 

cut-off frequency and phase) and reduce the dielectric loss. 

An interesting study [24] hypothesized and proved that uni-

modal operation bandwidth can effectively be increased by 

adjusting the size and location of the air region. In addition, 

the radiation efficiency and bandwidth of a slot antenna were 

successfully improved by forming an air region in the area of 

the slot radiator [25]. 

Although the SIW combined with the air region can be 

widely used as described, only a few studies have suggested 

analytical approaches and modeling for analysis of the air 

effect in SIW. In [24], highly accurate numerical calculations 

using the boundary integral-resonant mode expansion (BI-

RME) method were proposed for the analysis of a periodi-

cally perforated dielectric medium. In [19, 22], frequency 

independent effective permittivity was extracted using the 

commercial software tool, ANSYS HFSS (Electromagnetics 

Suite version 18.0), for monomode regime (𝑇𝐸ଵ଴) only. It is 

noteworthy that research for the optimization of the air hole 

design to a target value has not yet been carried out. 

This paper presents an optimization methodology of the 

air hole effect for high-performance SIW applications. In 

Section II, we introduce two efficient equations for analyzing 

the multiple air hole effect in SIW, where the wave equation 

and the electric field distribution profile in the TE mode 

regime were considered. Section III shows the optimization 

concept and procedure using a genetic algorithm (GA) com-

bined with analysis equations to extract the optimum air hole 

structure for the desired propagation constant. We verified 

the optimization performance by designing an SIW bandpass 

filter (BPF) and comparing it to the ideal equivalent model 

(Section IV). The SIW BPF with optimized air hole struc-

ture was simulated by the HFSS, and the results were in ex-

cellent agreement with the ideal model. Hence, we expect 

that this approach can provide an efficient optimization 

methodology for designing low loss broadband SIW circuits, 

including slot array antennas, for obtaining the optimum 

performance in microwave and mm-wave frequency range 

applications. 

II. ANALYSIS OF THE AIR HOLES IN SIW 

1. Structure Approximation 

Fig. 1 shows the section of SIW with an arbitrary number 

of circular air holes and the unit cell of the SIW in the x-z 

plane. The structure is characterized as follows: SIW width 

𝑎ௌூௐ, air hole diameter 𝑑௛,௞ with the centric position 𝑥଴௞, 

unit cell length 𝑙௨௖, number of air holes 𝑁, and height of  

 
Fig. 1. Section of SIW with arbitrary number of circular air holes 

and unit cell. 

 

SIW 𝑏. The shorting via hole diameter 𝑑௩ and the separation 

𝑠௩  are given by the condition 0.05 ൏ 𝑠௩/𝑔 ൏ 0.25, 𝑠௩ ൐ 𝑑௩ 

[12], and 𝜆௚ is the guided wave length. 𝑎௘௙௙ is the effective 

width of the equivalent RW and is given by [26]. 
 

𝑎௘௙௙ ൌ 𝑎ௌூௐ െ 𝑠௩ሺ0.766𝑒଴.ସସ଼ଶௗೡ/௦ೡ െ 1.176𝑒ିଵ.ଶଵସௗೡ/௦ೡሻ (1) 
 

Fig. 2 represents the approximated equivalent structure in 

the x-z plane and the x-y plane to facilitate a simple but ac-

curate analysis of the air hole effects. 

In the approximation, the circular air hole in Fig. 1 has 

been converted to a rectangular shape to have an equal vol-

ume of air in the unit cell. Hence, the relationship between 

Figs. 1 and 2 can be derived by Eqs. (2)–(3): 
 

 𝑑௘௙௙,௞ ൌ 𝜋൫𝑑௛,௞/2൯
ଶ

/𝑙௨௖         (2) 

 𝑥ଶ௞ିଵ ൌ 𝑥଴௞ െ 𝑑௘௙௙,௞/2            (3a) 

 𝑥ଶ௞ ൌ 𝑥଴௞ ൅ 𝑑௘௙௙,௞/2.      (3b) 
 

In this study, we considered the air hole that was closed by 

a conductor on the top and bottom plane of the SIW, so the 

structure does not have any radiation effect through the holes. 

 

2. Recursive Equation for SIW with Multiple Air Holes 

The recursive equation for the estimation of phase con-

stant β of the structure in Fig. 2 has been derived and pro- 

posed by the author [27]. The equation was successfully de-

rived from the wave equation for the case of the partially 

loaded waveguide [28], which is simple but accurate. As a 

 

 
Fig. 2. Approximated equivalent structure in x-z plane (a) and x-y 

plane (b). 
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result, the recursive equation for the phase constant β can be 

represented by Eqs. (4)–(7). 
 

 𝛽 ൌ ඥ𝜀௥𝑘଴
ଶ െ 𝑘ௗ

ଶ                (4) 

 𝛽 ൌ ඥ𝑘଴
ଶ െ 𝑘௔

ଶ               (5) 

 tan 𝑘ௗ𝑥ଵ ൌ 𝐹ሺ𝑥ଵ, 𝑥ଶሻ        (6) 

where 

𝐹ሺ𝑥௞, 𝑥௞ାଵሻ 

ൌ

⎩
⎪⎪
⎨

⎪⎪
⎧െ

𝑘௔

𝑘ௗ

tan 𝑘ௗሺ𝑥௞ାଵ െ 𝑥௞ሻ െ 𝐹ሺ𝑥௞ାଵ, 𝑥௞ାଶሻ

1 ൅ 𝐹ሺ𝑥௞ାଵ, 𝑥௞ାଶሻ tan 𝑘ௗሺ𝑥௞ାଵ െ 𝑥௞ሻ
,  if 𝑘 ൌ even 

െ
𝑘ௗ

𝑘௔

tan 𝑘௔ሺ𝑥௞ାଵ െ 𝑥௞ሻ െ 𝐹ሺ𝑥௞ାଵ, 𝑥௞ାଶሻ

1 ൅ 𝐹ሺ𝑥௞ାଵ, 𝑥௞ାଶሻ tan 𝑘௔ሺ𝑥௞ାଵ െ 𝑥௞ሻ
,  if 𝑘 ൌ odd   

െ
𝑘௔

𝑘ௗ
tan 𝑘ௗ ൫𝑎௘௙௙ െ 𝑥ଶே൯,                              if 𝑘 ൌ 2N    

 

(7) 
 

where 𝑘଴ ൌ 2𝜋𝑓ඥ𝜀଴𝜇଴, and 𝑘ௗ and 𝑘௔ are the cut-off wave 

numbers for the dielectric and air regions. The phase con-

stant β in 𝑇𝐸௠଴ modes can be numerically obtained using 

Eqs. (4)–(7). The effective dielectric constant of the structure 

in Fig. 2 can easily be obtained from the phase constant β. 
 

3. Closed Form Equation for the Effective Dielectric Constant 

The effective dielectric constant (𝜀௥,௘௙௙) in the SIW with 

air holes is mainly subject to E-field distribution in trans-

verse mode of wave propagation. The theory suggests that 

the combination of the air and dielectric media in the SIW 

will distort the E-field distribution profile to satisfy the 

boundary and phase matching condition at the interface of 

two different media, which will result in an increase in com-

plexity for exact analysis. In this study, however, an approxi-

mation was used, neglecting the boundary and phase match-

ing condition, because the E-field profile is not so significant 

a distortion when the operating frequency approaches the 

cut-off region. In this section, therefore, we proposed the 

closed form equation for the 𝜀௥,௘௙௙ from the E-field energy 

equivalence concept, on the assumption that the wave num-

ber and the E-field amplitude is equal to the conventional 

SIW filled with uniform dielectric material. We can finally 

obtain the closed form equation of 𝜀௥,௘௙௙ for Fig. 2(b) in Eq. 

(10), combining Eqs. (8) and (9). 
 

𝑊௛ ൌ 𝑊ௗ ൅ 𝑊௔ 

       ൌ
1
4

𝜀௥𝜀଴|𝐸଴|ଶ𝑏 

    ൈ ൝෍ ൤ሺെ1ሻ௞ାଵ 𝑥௞

2
൅

1
4𝑘௖

ሺെ1ሻ௞ sinሺ2𝑘௖𝑥௞ሻ൨ ൅

ଶே

௞ୀଵ

𝑎௘௙௙

2

െ
sin൫2𝑘௖𝑎௘௙௙൯

4𝑘௖
ൡ 

   ൅
1
4

𝜀଴|𝐸଴|ଶ𝑏 ෍ ൤ሺെ1ሻ௞ 𝑥௞

2
൅

1
4𝑘௖

ሺെ1ሻ௞ାଵ sinሺ2𝑘௖𝑥௞ሻ൨

ଶே

௞ୀଵ

   

 (8) 

𝑊௘௙௙ ൌ
1
4

𝜀௘௙௙𝜀଴|𝐸଴|ଶ𝑏 න sinଶ𝑘௖𝑥𝑑𝑥
௔೐೑೑

଴
  

           ൌ
1
4

𝜀௘௙௙𝜀଴|𝐸଴|ଶ𝑏 ቈ
𝑎௘௙௙

2
െ

sin൫2𝑘௖𝑎௘௙௙൯
4𝑘௖

቉   

(9) 

𝜀௥,௘௙௙ ൌ
2

𝑎௘௙௙
൝𝜀௥ ෍ ൤ሺെ1ሻ௞ାଵ 𝑥௞

2
൅

1
4𝑘௖

ሺെ1ሻ௞ sinሺ2𝑘௖𝑥௞ሻ൨

ଶே

௞ୀଵ

൅
𝜀௥𝑎௘௙௙

2
 

           ൅ ෍ ൤ሺെ1ሻ௞ 𝑥௞

2
൅

1
4𝑘௖

ሺെ1ሻ௞ାଵ sinሺ2𝑘௖𝑥௞ሻ൨

ଶே

௞ୀଵ

ൡ 

(10) 
 

where, 𝑊௛ , 𝑊ௗ , 𝑊௔ , and 𝑊௘௙௙  represent the total time-

average stored electric energy, the energy in dielectric,     

air, and equivalent dielectric media, respectively, and    

𝑘௖ ൌ 𝜋/𝑎௘௙௙ is the cut-off wavenumber of the SIW filled 

with uniform dielectric material. 

 

4. Efficient Method for Solving the Recursive Equation 

Recursive Eq. (6) can be expressed as Eq. (11) for finding 

minima, and 𝑘௔ and 𝑘ௗ can be expressed in terms of β us-

ing Eqs. (4) and (5). The root of Eq. (11) can be solved nu-

merically for β using the Newton-Raphson method. 
 

 𝑓௦ሺ𝛽ሻ ൌ tan 𝑘ௗ𝑥ଵ െ 𝐹ሺ𝑥ଵ, 𝑥ଶሻ = 0      (11) 
 

Fig. 3 shows the typical characteristic of Reሾ𝑓௦ሺ𝛽ሻሿ for 

solving the phase constant, and the initial value β0 is needed 

for the finding of minima. We need an initial value as close 

as possible to the root for the fast convergence of Eq. (11), 

and the closed form Eq. (10) was therefore used to obtain 

the initial value β0. 
 

5. Calculation Results 

Four structures that have different numbers of air holes (1, 

3, 5, and 7 holes) were considered and calculated to verify the 

 

 
Fig. 3. Reሾ𝑓௦ሺ𝛽ሻሿ for solving phase constant β. 
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Table 1. Position of air holes 

N Centric position of air holes 

1 𝑥଴௞ ൌ 𝑎௘௙௙/2 

3 𝑥଴௞ ൌ
𝑎௘௙௙

2
൅ ൫𝑑௛,௞ ൅ 0.3 𝑚𝑚൯ ൈ ሺ𝑘 െ 2ሻ,  

𝑘 ൌ 1 to 3 

5 𝑥଴௞ ൌ
𝑎௘௙௙

2
൅ ൫𝑑௛,௞ ൅ 0.3 𝑚𝑚൯ ൈ ሺ𝑘 െ 3ሻ,  

𝑘 ൌ 1 to 5 

7 𝑥଴௞ ൌ
𝑎௘௙௙

2
൅ ൫𝑑௛,௞ ൅ 0.3 𝑚𝑚൯ ൈ ሺ𝑘 െ 4ሻ, 

 𝑘 ൌ 1 to 7 
 

 
Fig. 4. Effective dielectric constant at the cut-off frequency of SIW 

with multiple air holes (N  = 1, 3, 5, 7). 
 

agreement of the 𝜀௥,௘௙௙  extracted at cut-off frequency by 

means of the proposed approaches. The results were com-

pared with simulated results from the eigenmode solver in 

the HFSS. We assumed Taconic/RF30-7H substrate prop-

erties with 𝜀௥  = 2.97, height ℎ = 0.762 mm and 𝑎௘௙௙   =  28.87 

mm, b = 0.762 mm, 𝑑௩  = 1 mm, 𝑠௩  = 1.4 mm varying the air 

hole diameter 𝑑௛,௞ from 0.6 mm to 3.6 mm and the unit cell 

length 𝑙௨௖ ൌ 𝑑௛,௞ ൅ 0.6 mm. The air hole position for each 

number of holes is shown in Table 1. All 𝑑௛,௞ are identical, 

and the gap between the air hole in unit cell is set to 0.3 mm. 

Fig. 4 shows the results for 𝜀௥,௘௙௙ using the three methods 

along with the air hole diameter variation, which shows ex-

cellent agreement with the proposed approaches (within 2% 

error for the analysis scope).  

III. OPTIMIZATION USING GENETIC ALGORITHM 

A GA was applied for SIW optimization, in which the air 

hole diameters 𝑑௛,௞, number of holes N, and number of cells 

𝑁௖௘௟௟ were the variables. We show how the GA is applied 

when the number of holes is fixed, and then we extend this 

to the case where the number of holes is variable. 
 

1. Restricted Tournament Selection 

Restricted tournament selection (RTS) is a multimodal 

GA [29] that is able to maintain a diverse population 

throughout the evolution process. Diversity is a critical fea-

ture needed in GAs in order to avoid premature convergence. 

Previous studies show the advantage in performance of RTS 

compared to other GAs [30, 31]. The algorithm is summa-

rized as follows: 

1) From the population, pick two parents, A and B. 

2) Cross over and mutate A and B to produce offspring, A ′ 

and B ′. 

3) Pick a subpopulation of w chromosomes from the popu-

lation. 

4) Find the chromosome that most resembles A ′ from the 

subpopulation and let it compete for a place in the 

population. 

5) Repeat steps 3 and 4 for B ′. 

 

The above process is repeated until a certain stopping cri-

terion is met; such a criterion can be a time limit, conver-

gence of fitness value, fitness value exceeding a threshold, etc. 

Further details are discussed in the rest of this section. 

 

2. Chromosome and Fitness Function 

For a case with N holes, a vector of 𝑁 ൅ 1  double-

precision floating-point numbers represents a single chromo-

some. The first number in the vector represents the number 

of cells. The rest of the number represents the hole diameters. 

The ሺ𝑖 ൅ 1ሻth gene represents the diameter of the 𝑖th hole. 

The population is simply a 2-D array of size ሺ𝑁 ൅ 1ሻ ൈ 𝑁p, 

and 𝑁p is the size of population. Note that the first gene of 

the chromosome does not need to be a floating-point num-

ber; this choice was made for the sake of simplicity. 

Initialization of a population can be carried out by setting 

the first gene of every chromosome to 𝑈ሼ𝑁௖௘௟௟,௠௜௡, 𝑁௖௘௟௟,௠௔௫ሽ 

and the rest of the genes to 𝑈൫𝑑h,k,min, 𝑑h,k,max൯, where 𝑈ሼ𝑎, 𝑏ሽ 

and 𝑈ሺ𝑎, 𝑏ሻ  are discrete and continuous uniform ran-   

dom variables in the ranges ሾ𝑎, 𝑏ሿ and ሺ𝑎, 𝑏ሻ, respectively, 

𝑛௖௘௟௟,௠௜௡  is the minimum number of cells, 𝑛௖௘௟௟,௠௔௫  is the 

maximum number of cells, 𝑑h,k,min is the minimum diameter 

of a hole, and 𝑑h,k,max is the maximum diameter. The fitness 

function, which assigns a value of fitness to a chromosome, is 

defined as follows: 
 

 𝑓ሺ𝑥௜ሻ ൌ െ|𝑇 െ 𝑔ሺ𝑥௜ሻ|         (12) 
 

where 𝑥௜ is the 𝑖th chromosome, T is the target value, and 

we can freely assign this value (i.e., the phase constant or 

effective dielectric constant etc. can be selected), and 𝑔ሺ𝑥௜ሻ 

is a computer function that computes the wavenumber for 𝑥௜. 

The chromosomes that have wavenumbers closer to the tar-

get have higher fitness values. This fitness function directs 

the evolving population toward the configurations that have 

the target wavenumber. The population stops evolving when 
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a given computation time is exhausted or the solutions have  

converged. 

 

3. Variable Number of Holes 

For the case with variable number of holes, the chromo-

some length will also vary. There are GA schemes to deal 

with variable-length chromosomes, but in order to avoid this 

extra complexity and avoid an increase in the optimization 

time, parallel multiple populations are evolved independently, 

with each population representing a single number of holes. 

After the evolutions have finished, all populations are evalu-

ated using the fitness function, and the top solutions can be 

found by sorting them according to their fitness values. 

 

4. Genetic Operators 

Since the chromosome consists of both positive integers 

and real numbers, it is convenient to deal with these sepa-

rately. For integers, given their small magnitudes, one-point 

crossovers and random bit flip mutations were performed on 

their unsigned binary representations. 

For genes with real numbers, genetic operators that deal 

with real numbers effectively were used. Blend crossover [32] 

was used to cross over the two parents, as shown in Eq. (13) 
 

 𝑧௜ ൌ 𝑈൫𝑥௜ െ 𝛼ሺ𝑦௜ െ 𝑥௜ሻ, 𝑦௜ ൅ 𝛼ሺ𝑦௜ െ 𝑥௜ሻ൯   (13) 
 

where 𝑥௜ and 𝑦௜ are the 𝑖th genes of two parents, assuming 

𝑥௜ ൏ 𝑦௜, 𝑧௜ is the 𝑖th gene of the offspring, and α is a factor 

that controls the expansion. α ൌ 0.5 was used. 

Gaussian mutation [33] is an effective mutation method 

for real-coded GAs. It is applied with a mutation probability 

𝑝m, and its operation is given by 
 

                    𝑧௜ ൌ 𝑥௜ ൅ 𝑁ሺ0, 𝜎ଶሻ                 (14) 
 

where 𝑥௜ is the 𝑖th gene before mutation, and 𝑁ሺ0, 𝜎ଶሻ is a 

Gaussian random variable with mean 0 and variance 𝜎ଶ. The 

extent of the disruptiveness of mutation can be precisely  

controlled with the probability and variance. 𝑝m ൌ 1 and 

𝜎ଶ ൌ 8.33 ൈ 10ିସ൫𝑑h,k,max െ 𝑑h,k,min൯ were used in this study. 
 

5. Optimization Results 

Optimization was carried out to find SIW parameters 

when the target is phase constant β, in which the air hole 

diameters 𝑑௛,௞ and number of holes N were the variables. 

The number of cells 𝑁௖௘௟௟ was fixed to 1 for convenience. 

We used Taconic/RF30-7H substrate properties with 𝜀௥   =  

2.97, height ℎ  = 0.762 mm, 𝑎௘௙௙  = 28.87 mm, 𝑙௨௖ ൌ 𝑑௛,௞ ൅

0.6 mm and a gap between the air holes in the unit cell of 0.3 

mm. 

Table 2 shows the optimization results according to the 

score rank when the target value of β is 80 rad/m and the 

errors in percentage indicate the difference between the op-

timized and target values of β. Several types of solution are 

suggested in Table 2, and they show good agreement (less 

than 2.1e-8% optimization errors). The optimization process 

took about a minute using a typical laptop computer.  

IV. VALIDATION BY BANDPASS FILTER DESIGN 

The high impedance waveguide sections in SIW can be 

realized by the introduction of multiple air holes, as the ef-

fective dielectric constant of SIW can be lowered by the par-

tially removed dielectric regions. The high impedance wave-

guide sections operating below the cut-off frequency can be 

used as an impedance inverter. Fig. 5 shows the 5th order 

equivalent BPF model, which consists of a half-wave resona-

tor with a low impedance section separated by the high im-

pedance coupling sections. The K inverter value can be ex-

tracted by the T network equivalent circuit model and the 

scattering parameter of high impedance sections [34]. 

A previous study introduced the design method of this fil-

ter based on the analytical method and the filter design pa-

rameters that were extracted by the EM simulation [22]. 

There is a limit to this approach for obtaining accurate di-

mensions with a target K inverter value, because numerous 

EM simulations are needed to find well-matched dimensions 

of air hole diameters 𝑑௛,௞, number of holes N, and number of cells  

 

 
Fig. 5. Equivalent model of 5th order bandpass filter. 

𝑎𝑒𝑓𝑓

Table 2. Optimization results by genetic algorithm when the target value was 𝛽 ൌ 80 and 𝑁௖௘௟௟ was fixed to 1 

Score 
rank N 𝑑௛,ଵ 𝑑௛,ଶ 𝑑௛,ଷ 𝑑௛,ସ 𝑑௛,ହ 𝑑௛,଺ 𝑑௛,଻ Optimized β Error (%)

1 7 3.36 1.92 2.29 2.52 1.28 3.60 2.14 79.99999998 2.1e-08 

2 4 2.34 2.58 1.74 1.60 - - - 79.99999986 1.7e-07 

6 3 1.80 3.60 1.97 - - - - 79.99999958 5.2e-07 

8 5 1.00 1.46 3.10 2.65 1.52 - - 79.99999948 6.5e-07 
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𝑁௖௘௟௟. In this paper, a very accurate approach is applied to find 

the dimension of the filter by means of the recursive equation 

and optimization by GA. 

For the validation, the 5th order BPF was designed with 4 

GHz center frequency and 600 MHz bandwidth, with the 

introduction of multiple air holes as an impedance inverter. 

The element values of the 5th order Chebyshev low pass fil-

ter with 15 dB return loss (0.14 dB ripple) were used, and the 

impedance inverter factor 𝐾௡ିଵ,௡/𝑍଴ was obtained from [34]. 

We used Taconic/CER-10 substrate properties with 𝜀௥  = 10, 

height ℎ = 0.635 mm and 𝑎௘௙௙  = 15.8 mm, 𝑎ௌூௐ  = 16.34 mm, 

b = 0.635 mm, 𝑑௩  = 0.7 mm, 𝑠௩  = 0.95 mm 𝑙௨௖ ൌ 𝑑௛,௞ ൅ 0.25 mm, 

and the gap between the air hole in unit cell was set to 0.25 

mm. The number of air holes N was fixed to 7, and the di-

ameters of seven air holes 𝑑௛,௞ were set to equal values for 

design convenience. Table 3 shows the desired values for the 

propagation constant 𝛽௡ and the effective dielectric constant 

𝜀௥,௘௙௙,௡ corresponding to the 𝐾௡ିଵ,௡/𝑍଴ values. The optimi-

zation results from the GA for the number of unit cell 𝑁௖௘௟௟, 

air hole diameter 𝑑௛,௞, half-wave resonator length 𝑙௥,௡, and 

coupling length 𝑙௖,௡ are also shown in Table 3. 

Fig. 6 shows the 5th order band pass filter implemented in 

SIW with multiple air holes, with the RW interface and the 

microstrip interference using tapered transition to excite the 

𝑇𝐸ଵ଴ mode [35]. 

The results simulated (by HFSS) for the designed 5th or- 

 

Table 3. Optimization results by genetic algorithm 

N 𝐾௡ିଵ,௡/𝑍଴ 𝛽௡ 𝜀௥,௘௙௙,௡ 𝑁௖௘௟௟ 
𝑑௛,௞ 
(mm) 

𝑙௥,௡ 
(mm)

𝑙௖,௡

(mm)

1 0.7034 120.1 4.92 2 1.49 7.11 3.48

2 0.4525 108.6 4.68 4 1.68 6.20 7.70

3 0.3448 114.7 4.81 6 1.57 5.84 10.92

 

 
(a) 

 
(b) 

Fig. 6. Fifth order bandpass filter implemented by SIW with mul-

tiple air holes. (a) Rectangular waveguide interface and (b) 

microstrip interface using tapered transition. 

 
Fig. 7. HFSS simulation results of 5th order band pass filter. 

 

der BPF using RW interface (without transition) and the 

ideal RW equivalent model are presented in Fig. 7, which 

shows excellent agreement over the entire frequency band. In 

the case of the microstrip interface with transition, a slightly 

different response is shown by the parasitic effects of tapered 

transition [36]. 

V. CONCLUSION 

This paper proposes a novel optimization methodology for 

the multiple air hole effect for high-performance SIW appli-

cations by adopting a GA that is combined with highly effi-

cient analysis equations of the air hole (i.e., recursive and 

closed form equations). In order to verify the optimization 

performance, a 5th order SIW BPF with multiple air holes 

for realizing the high impedance section was designed using 

the proposed method and simulated by the HFSS. The re-

sults are compared to the ideal equivalent model and show 

close correlation and excellent agreement. 

Therefore, we expect the findings of this study can provide 

an efficient and accurate optimization methodology for the 

design of low loss broadband SIW circuits to optimum per-

formance in microwave and mm-wave frequency range appli-

cations. 
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