• Title/Summary/Keyword: engineering optimization

Search Result 11,061, Processing Time 0.035 seconds

Structural damage identification of truss structures using self-controlled multi-stage particle swarm optimization

  • Das, Subhajit;Dhang, Nirjhar
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.345-368
    • /
    • 2020
  • The present work proposes a self-controlled multi-stage optimization method for damage identification of structures utilizing standard particle swarm optimization (PSO) algorithm. Damage identification problem is formulated as an inverse optimization problem where damage severity in each element of the structure is considered as optimization variables. An efficient objective function is formed using the first few frequencies and mode shapes of the structure. This objective function is minimized by a self-controlled multi-stage strategy to identify and quantify the damage extent of the structural members. In the first stage, standard PSO is utilized to get an initial solution to the problem. Subsequently, the algorithm identifies the most damage-prone elements of the structure using an adaptable threshold value of damage severity. These identified elements are included in the search space of the standard PSO at the next stage. Thus, the algorithm reduces the dimension of the search space and subsequently increases the accuracy of damage prediction with a considerable reduction in computational cost. The efficiency of the proposed method is investigated and compared with available results through three numerical examples considering both with and without noise. The obtained results demonstrate the accuracy of the present method can accurately estimate the location and severity of multi-damage cases in the structural systems with less computational cost.

Seismic performance analysis of steel-brace RC frame using topology optimization

  • Qiao, Shengfang;Liang, Huqing;Tang, Mengxiong;Wang, Wanying;Hu, Hesong
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.417-432
    • /
    • 2019
  • Seismic performance analysis of steel-brace reinforced concrete (RC) frame using topology optimization in highly seismic region was discussed in this research. Topology optimization based on truss-like material model was used, which was to minimum volume in full-stress method. Optimized bracing systems of low-rise, mid-rise and high-rise RC frames were established, and optimized bracing systems of substructure were also gained under different constraint conditions. Thereafter, different structure models based on optimized bracing systems were proposed and applied. Last, structural strength, structural stiffness, structural ductility, collapse resistant capacity, collapse probability and demolition probability were studied. Moreover, the brace buckling was discussed. The results show that bracing system of RC frame could be derived using topology optimization, and bracing system based on truss-like model could help to resolve numerical instabilities. Bracing system of topology optimization was more effective to enhance structural stiffness and strength, especially in mid-rise and high-rise frames. Moreover, bracing system of topology optimization contributes to increase collapse resistant capacity, as well as reduces collapse probability and accumulated demolition probability. However, brace buckling might weaken beneficial effects.

Structural system reliability-based design optimization considering fatigue limit state

  • Nophi Ian D. Biton;Young-Joo Lee
    • Smart Structures and Systems
    • /
    • v.33 no.3
    • /
    • pp.177-188
    • /
    • 2024
  • The fatigue-induced sequential failure of a structure having structural redundancy requires system-level analysis to account for stress redistribution. System reliability-based design optimization (SRBDO) for preventing fatigue-initiated structural failure is numerically costly owing to the inclusion of probabilistic constraints. This study incorporates the Branch-and-Bound method employing system reliability Bounds (termed the B3 method), a failure-path structural system reliability analysis approach, with a metaheuristic optimization algorithm, namely grey wolf optimization (GWO), to obtain the optimal design of structures under fatigue-induced system failure. To further improve the efficiency of this new optimization framework, an additional bounding rule is proposed in the context of SRBDO against fatigue using the B3 method. To demonstrate the proposed method, it is applied to complex problems, a multilayer Daniels system and a three-dimensional tripod jacket structure. The system failure probability of the optimal design is confirmed to be below the target threshold and verified using Monte Carlo simulation. At earlier stages of the optimization, a smaller number of limit-state function evaluation is required, which increases the efficiency. In addition, the proposed method can allocate limited materials throughout the structure optimally so that the optimally-designed structure has a relatively large number of failure paths with similar failure probability.

An enhanced simulated annealing algorithm for topology optimization of steel double-layer grid structures

  • Mostafa Mashayekhi;Hamzeh Ghasemi
    • Advances in Computational Design
    • /
    • v.9 no.2
    • /
    • pp.115-136
    • /
    • 2024
  • Stochastic optimization methods have been extensively studied for structural optimization in recent decades. In this study, a novel algorithm named the CA-SA method, is proposed for topology optimization of steel double-layer grid structures. The CA-SA method is a hybridized algorithm combining the Simulated Annealing (SA) algorithm and the Cellular Automata (CA) method. In the CA-SA method, during the initial iterations of the SA algorithm, some of the preliminary designs obtained by SA are placed in the cells of the CA. In each successive iteration, a cell is randomly chosen from the CA. Then, the "local leader" (LL) is determined by selecting the best design from the chosen cell and its neighboring ones. This LL then serves as the leader for modifying the SA algorithm. To evaluate the performance of the proposed CA-SA algorithm, two square-on-square steel double-layer grid structures are considered, with discrete cross-sectional areas. These numerical examples demonstrate the superiority of the CA-SA method over SA, and other meta-heuristic algorithms reported in the literature in the topology optimization of large-scale skeletal structures.

Optimization of a Composite Laminated Structure by Network-Based Genetic Algorithm

  • Park, Jung-Sun;Song, Seok-Bong
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1033-1038
    • /
    • 2002
  • Genetic alsorithm (GA) , compared to the gradient-based optimization, has advantages of convergence to a global optimized solution. The genetic algorithm requires so many number of analyses that may cause high computational cost for genetic search. This paper proposes a personal computer network programming based on TCP/IP protocol and client-server model using socket, to improve processing speed of the genetic algorithm for optimization of composite laminated structures. By distributed processing for the generated population, improvement in processing speed has been obtained. Consequently, usage of network-based genetic algorithm with the faster network communication speed will be a very valuable tool for the discrete optimization of large scale and complex structures requiring high computational cost.

Design of Fractional Order Controller Based on Particle Swarm Optimization

  • Cao, Jun-Yi;Cao, Bing-Gang
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.775-781
    • /
    • 2006
  • An intelligent optimization method for designing Fractional Order PID(FOPID) controllers based on Particle Swarm Optimization(PSO) is presented in this paper. Fractional calculus can provide novel and higher performance extension for FOPID controllers. However, the difficulties of designing FOPID controllers increase, because FOPID controllers append derivative order and integral order in comparison with traditional PID controllers. To design the parameters of FOPID controllers, the enhanced PSO algorithms is adopted, which guarantee the particle position inside the defined search spaces with momentum factor. The optimization performance target is the weighted combination of ITAE and control input. The numerical realization of FOPID controllers uses the methods of Tustin operator and continued fraction expansion. Experimental results show the proposed design method can design effectively the parameters of FOPID controllers.

Performance Analysis of an Aircraft Gas Turbine Engine using Particle Swarm Optimization

  • Choi, Jae Won;Sung, Hong-Gye
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.4
    • /
    • pp.434-443
    • /
    • 2014
  • A turbo fan engine performance analysis and the optimization using particle swarm optimization(PSO) algorithm have been conducted to investigate the effects of major performance design parameters of an aircraft gas turbine engine. The FJ44-2C turbofan engine, which is widely used in the small business jet, CJ2 has been selected as the basic model. The design parameters consists of the bypass ratio, burner exit temperature, HP compressor ratio, fan inlet mass flow, and nozzle cooling air ratio. The sensitivity analysis of the parameters has been evaluated and the optimization of the parameters has been performed to achieve high net thrust or low specific fuel consumption.

PID Control Design with Exhaustive Dynamic Encoding Algorithm for Searches (eDEAS)

  • Kim, Jong-Wook;Kim, Sang-Woo
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.6
    • /
    • pp.691-700
    • /
    • 2007
  • This paper proposes a simple but effective design method of PID control using a numerical optimization method. In order to achieve both stability and performance, gain and phase margins and performance indices of step response directly compose of the cost function. Hence, the proposed approach is a multiobjective optimization problem. The main effectiveness of this approach results from the strong capability of the used optimization method. A one-dimensional example concerning gain margin illustrates the practical applicability of the optimization method. The present approach has many degrees of freedom in controller design by only adjusting related weight constants. The attained PID controller is compared with Wang#s and Ho#s methods, IAE, and ISE for a high-order process, and the simulation result for various design targets shows that the proposed approach achieves desired time-domain performance with a guarantee of frequency-domain stability.

Utilizing Soft Computing Techniques in Global Approximate Optimization (전역근사최적화를 위한 소프트컴퓨팅기술의 활용)

  • 이종수;장민성;김승진;김도영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.449-457
    • /
    • 2000
  • The paper describes the study of global approximate optimization utilizing soft computing techniques such as genetic algorithms (GA's), neural networks (NN's), and fuzzy inference systems(FIS). GA's provide the increasing probability of locating a global optimum over the entire design space associated with multimodality and nonlinearity. NN's can be used as a tool for function approximations, a rapid reanalysis model for subsequent use in design optimization. FIS facilitates to handle the quantitative design information under the case where the training data samples are not sufficiently provided or uncertain information is included in design modeling. Properties of soft computing techniques affect the quality of global approximate model. Evolutionary fuzzy modeling (EFM) and adaptive neuro-fuzzy inference system (ANFIS) are briefly introduced for structural optimization problem in this context. The paper presents the success of EFM depends on how optimally the fuzzy membership parameters are selected and how fuzzy rules are generated.

  • PDF

A Framework for Managing Approximation Models in place of Expensive Simulations in Optimization (최적화에서의 근사모델 관리기법의 활용)

  • 양영순;장범선;연윤석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.159-167
    • /
    • 2000
  • In optimization problems, computationally intensive or expensive simulations hinder the use of standard optimization techniques because the computational expense is too heavy to implement them at each iteration of the optimization algorithm. Therefore, those expensive simulations are often replaced with approximation models which can be evaluated nearly free. However, because of the limited accuracy of the approximation models, it is practically impossible to find an exact optimal point of the original problem. Significant efforts have been made to overcome this problem. The approximation models are sequentially updated during the iterative optimization process such that interesting design points are included. The interesting points have a strong influence on making the approximation model capture an overall trend of the original function or improving the accuracy of the approximation in the vicinity of a minimizer. They are successively determined at each iteration by utilizing the predictive ability of the approximation model. This paper will focuses on those approaches and introduces various approximation methods.

  • PDF