• Title/Summary/Keyword: engineering optimization

Search Result 11,061, Processing Time 0.037 seconds

Shell Design Optimization Technique considering the Appearance of Close Frequencies in Optimization Process (고유진동수 접근현상을 고려한 쉘 구조물의 설계최적화기법)

  • Bae, Jung-Eun;Lee, Sang-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.248-251
    • /
    • 2006
  • This paper provides the basic theory and numerical results of shell design optimization considering the appearance of close natural frequencies in optimization process. In this study the fundamental natural frequency to be maximized is considered as the objective function and the initial volume of structures is used as the constraint function. In addition, the constraints related to natural frequency is also adopted to avoid the natural frequency closeness phenomenon during the optimization iteration. The Coon's patch is used to represent the shape and thickness distribution of shells. A degenerated shell finite element is adopted to calculate the fundamental natural frequency of the shells. The SQP available in the optimizer DoT is used to search optimum solution. From numerical results, the introduction of the frequency constraint into shell design optimization can deeply affect on the final optimum shape of shells although it is likely to be used to avoid the frequency closeness phenomenon.

  • PDF

The Research of Optimal Plant Layout Optimization based on Particle Swarm Optimization for Ethylene Oxide Plant (PSO 최적화 기법을 이용한 Ethylene Oxide Plant 배치에 관한 연구)

  • Park, Pyung Jae;Lee, Chang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.32-37
    • /
    • 2015
  • In the fields of plant layout optimization, the main goal is to minimize the construction cost including pipelines as satisfying all constraints such as safety and operating issues. However, what is the lacking of considerations in previous researches is to consider proper safety and maintenance spaces for a complex plant. Based on the mathematical programming, MILP(Mixed Integer Linear Programming) problems including various constraints can be formulated to find the optimal solution which is to achieve the best economic benefits. The objective function of this problem is the sum of piping cost, pumping cost and area cost. In general, many conventional optimization solvers are used to find a MILP problem. However, it is really hard to solve this problem due to complex inequality and equality constraints, since it is impossible to use the derivatives of objective functions and constraints. To resolve this problem, the PSO (Particle Swarm Optimization), which is one of the representative sampling approaches and does not need to use derivatives of equations, is employed to find the optimal solution considering various complex constraints in this study. The EO (Ethylene Oxide) plant is tested to verify the efficacy of the proposed method.

Structural Design Optimization of a High Speed Machining Center Using a Simple Genetic Algorithm (금형가공센터 고속 이송체의 최적설계)

  • 최영휴;박선균;배병태;이재윤;김태형;박보선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.74-78
    • /
    • 2001
  • In this study, a multi-step optimization technique combined with a simple genetic algorithm is introduce to the structural design optimization of a high speed machining center. In this case, the design problem is to find out the best design variables which minimize the static compliance, the dynamic compliance, and the weight of the machine structure and meet some design constraints simultaneously. Dimensional thicknesses of the thirteen structural members along the static force loop of the machine structure are adopted as design variables. The first optimization step is a static design optimization, in which the static compliance and the weight are minimized under some dimensional and safety constraints. The second step is a dynamic design optimization, where the dynamic compliance and the weight are minimized under the same constraints. After optimization, the weight of the moving body was reduced to 9.1% of the initial design respectively. Both static and dynamic compliances of the optimum design are also in the feasible range even thought they were slightly increased than before.

  • PDF

Efficient Approximation Method for Constructing Quadratic Response Surface Model

  • Park, Dong-Hoon;Hong, Kyung-Jin;Kim, Min-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.876-888
    • /
    • 2001
  • For a large scaled optimization based on response surface methods, an efficient quadratic approximation method is presented in the context of the trust region model management strategy. If the number of design variables is η, the proposed method requires only 2η+1 design points for one approximation, which are a center point and tow additional axial points within a systematically adjusted trust region. These design points are used to uniquely determine the main effect terms such as the linear and quadratic regression coefficients. A quasi-Newton formula then uses these linear and quadratic coefficients to progressively update the two-factor interaction effect terms as the sequential approximate optimization progresses. In order to show the numerical performance of the proposed method, a typical unconstrained optimization problem and two dynamic response optimization problems with multiple objective are solved. Finally, their optimization results compared with those of the central composite designs (CCD) or the over-determined D-optimality criterion show that the proposed method gives more efficient results than others.

  • PDF

Multi-step Optimization of the Moving Body for the High Speed Machinining Center using Weighted Method and G.A. (가중치방법과 유전알고리즘을 이용한 금형가공센터 고속이송체의 다단계 최적설계)

  • 최영휴;배병태;강영진;이재윤;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.23-27
    • /
    • 1997
  • This paper introduces the structural design optimization of a high speed machining center using multi-step optimization combined with G.A.(Genetic Algorithm) and Weighted Method. In this case, the design problem is to find out the best design variables which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously. Dimensional thicknesses of the thirteen structural members of the machine structure are adopted as design variables. The first step is the cross-section configuration optimization, in which the area moment of inertia of the cross-section for each structural member is maximized while its area is kept constant The second step is a static design optimization, In which the static compliance and the weight of the machine structure are minimized under some dimensional and safety constraints. The third step IS a dynamic design optimization, where the dynamic compliance and the structure weight are minimized under the same constraints. After optunization, static and dynamic compliances were reduced to 62.3% and 95.7% Eorn the initial design, while the weight of the moving bodies are also in the feaslble range.

  • PDF

Optimization Approach for a Catamaran Hull Using CAESES and STAR-CCM+

  • Yongxing, Zhang;Kim, Dong-Joon
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.272-276
    • /
    • 2020
  • This paper presents an optimization process for a catamaran hull form. The entire optimization process was managed using the CAD-CFD integration platform CAESES. The resistance of the demi-hull was simulated in calm water using the CFD solver STAR-CCM+, and an inviscid fluid model was used to reduce the computing time. The Free-Form Deformation (FFD) method was used to make local changes in the bulbous bow. For the optimization of the bulbous bow, the Non-dominated Sorting Genetic Algorithm (NSGA)-II was applied, and the optimization variables were the length, breadth, and angle between the bulbous bow and the base line. The Lackenby method was used for global variation of the bow of the hull. Nine hull forms were generated by moving the center of buoyancy while keeping the displacement constant. The optimum bow part was selected by comparing the resistance of the forms. After obtaining the optimum demi-hull, the distance between two demi-hulls was optimized. The results show that the proposed optimization sequence can be used to reduce the resistance of a catamaran in calm water.

A Study on Improved Optimization Method for Modeling High Resistivity SOI RF CMOS Symmetric Inductor (High Resistivity SOI RF CMOS 대칭형 인덕터 모델링을 위한 개선된 Optimization 방법 연구)

  • Ahn, Jahyun;Lee, Seonghearn
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.9
    • /
    • pp.21-27
    • /
    • 2015
  • An improved method based on direct extraction and simultaneous optimization is developed to determine model parameters of symmetric inductors fabricated by the high resistivity(HR) silicon-on-insulator(SOI) RF CMOS process. In order to improve modeling accuracy, several model parameters are directly extracted by Y and Z-parameter equations derived from two equivalent circuits of symmetric inductor and grounded center-tap one, and the number of unknown parameters is reduced using parallel resistance and total inductance equations. In order to improve optimization accuracy, two sets of measured S-parameters are simultaneously optimized while same model parameters in two equivalent circuits are set to common variables.

System Optimization of Orthotropic Steel-Deck Bridges by Load and Resistance Factor Design (LRFD에 의한 강상판형교의 시스템 최적설계)

  • 조효남;민대홍;김현우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.262-271
    • /
    • 1998
  • Recent, more and more steel deck bridges are adopted for the design of long span bridges and the upgrading of existing concrete deck bridges, mainly because of reduced self weight, higher stiffness and efficient erection compared to concrete decks. The main objective of this study is to propose on formulation of the design optimizations to develop an optimal desist program required for optimum desist for orthotropic steel-deck bridges. The objective function of the optimization is formulated as a minimum initial cost design problem. The behavior and design constraints are formulated based on the ASD and LRFD criteria of the Korean Bridge Design Code(1996). The optimum design program developed in this study consists of two steps. In the first step the system optimization of the steel box girder bridges is carried out. And in the second step the program provided the optimum design of the orthotropic steel-deck with close ribs. In the optimal design program the analysis module for the deck optimization is based on the Pelican Esslinger method. The optimizer module of the program utilizes the ADS(Automated Desist Synthesis) routines using the optimization techniques fuor constrained optimization. From the results of real application examples, The cost effectiveness of optimum orthotropic steel-deck bridges designs based on both ASD and LRFD methods is investigated by comparing the results with those of conventional designs, and it may be concluded that the design developed in this study seems efficient and robust for the optimization of orthotropic steel-deck bridges

  • PDF

Study on Optimum Modification Method of Dynamic Charcteristics of Ship Structures by Multi-level Optimization (다단계최적화방법에 의한 선박구조물의 동특성의 최적변경법에 관한연구)

  • 박석주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.574-582
    • /
    • 1999
  • This paper discusses the multi-level optimization method in dynamic optimization problems through stiffened plate of ship structures. In structural optimization the computational cost increases rapidly as the number of design variables increases. And we need a great amount of cal-culation and time on problems of modified dynamic characteristics of large and complicated struc-tures. In this paper the multi-level optimization is proposed which decreases computational time and cost. the dynamic optimum designs of stiffened plate that control the natural frequency and minimize weight subjected to constraints condition are derived. The way to apply the multi-level optimization methods in this study follow: In the first step the dynamic characteristics is controlled for the two-dimensional model of stiffened plate by sensitivity analysis and quasi-least squares methods. In the second step the cross-section of the stiffener is decided so that the weight is minimized under needed constraints by the steepest descent or ascent method. In the third the three-dimensional model is made based on the results of the first step and the second step confirmation and finer tuning of the objective function are carried out. It is shown that the results are effective in the optimum modification for dynamic characteristics of the stiffened plate.

  • PDF

Topology Optimization of Plane Structures with Multiload Case using a Lower order Finite Element (저차 유한요소를 이용한 다하중 경우를 가지는 평면구조물의 위상최적화)

  • 이상진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.59-68
    • /
    • 2003
  • An optimization Program is developed to produce new topologies of plane structures under multiload case. A four-node finite element is used in the response analysis to reduce the computation time and to ultimately achieve practical topology optimization. The bilinear finite element is prone to produce chequer-boarding phenomenon and a simple filtering process is therefore adopted. An artificial material model is employed to represent the structural material and the resizing algorithm based on the optimality criteria is adopted to update the material density parameter during optimization process. With newly developed optimization program, the comparison study has been made between single and multiload cases and its results are described in this paper. From numerical results, it appears that multiload case should be considered to achieve the practical topology optimization.