• Title/Summary/Keyword: engineering optimization

Search Result 11,050, Processing Time 0.036 seconds

Loading pattern optimization using simulated annealing and binary machine learning pre-screening

  • Ga-Hee Sim;Moon-Ghu Park;Gyu-ri Bae;Jung-Uk Sohn
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1672-1678
    • /
    • 2024
  • We introduce a creative approach combining machine learning with optimization techniques to enhance the optimization of the loading pattern (LP). Finding the optimal LP is a critical decision that impacts both the reload safety and the economic feasibility of the nuclear fuel cycle. While simulated annealing (SA) is a widely accepted technique to solve the LP optimization problem, it suffers from the drawback of high computational cost since LP optimization requires three-dimensional depletion calculations. In this note, we introduce a technique to tackle this issue by leveraging neural networks to filter out inappropriate patterns, thereby reducing the number of SA evaluations. We demonstrate the efficacy of our novel approach by constructing a machine learning-based optimization model for the LP data of the Korea Standard Nuclear Power Plant (OPR-1000).

A Study on Crashworthiness Optimization of Front Side Members using Bead Shape Optimization (비드 형상 최적화를 이용한 전방 측면 부재의 충돌 최적화 연구)

  • Lee, Jun-Young;Lee, Jung-Suk;Lee, Yong-Hoon;Bae, Bok-Soo;Kim, Kyu-Hak;Yim, Hong-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.331-337
    • /
    • 2012
  • In this study, the front side member is optimized using a topography optimization technique. Optimization of a simple beam is conducted before optimization of the front side member. The objective function is set to minimize the first buckling factor in the longitudinal direction. The design variable corresponds to the perturbation of nodes normal to the shell's mid-plane space. The crash analysis is conducted on a simple beam, which is optimized by Response Surface Method and the topography optimization technique. In order to verify the topography optimization technique, the results of the RSM and topography optimization model are compared. Consequently, we confirm the satisfactory performance of the topography optimization technique, and apply this topography optimization to the front side member. Thus, the front side member is optimized and its crashworthiness is increased.

Performance Improvement of Cumulus Parameterization Code by Unicon Optimization Scheme (Unicon Optimization 기법을 이용한 적운모수화 코드 성능 향상)

  • Lee, Chang-Hyun;kim, Min-gyu;Shin, Dae-Yeong;Cho, Ye-Rin;Yeom, Gi-Hun;Chung, Sung-Wook
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.2
    • /
    • pp.124-133
    • /
    • 2022
  • With the development of hardware technology and the advancement of numerical model methods, more precise weather forecasts can be carried out. In this paper, we propose a Unicon Optimization scheme combining Loop Vectorization, Dependency Vectorization, and Code Modernization to optimize and increase Maintainability the Unicon source contained in SCAM, a simplified version of CESM, and present an overall SCAM structure. This paper tested the unicorn optimization scheme in the SCAM structure, and compared to the existing source code, the loop vectorization resulted in a performance improvement of 3.086% and the dependency vectorization of 0.4572%. And in the case of Unicorn Optimization, which applied all of these, the performance improvement was 3.457% compared to the existing source code. This proves that the Unicorn Optimization technique proposed in this paper provides excellent performance.

Structural optimization with teaching-learning-based optimization algorithm

  • Dede, Tayfun;Ayvaz, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.47 no.4
    • /
    • pp.495-511
    • /
    • 2013
  • In this paper, a new efficient optimization algorithm called Teaching-Learning-Based Optimization (TLBO) is used for the least weight design of trusses with continuous design variables. The TLBO algorithm is based on the effect of the influence of a teacher on the output of learners in a class. Several truss structures are analyzed to show the efficiency of the TLBO algorithm and the results are compared with those reported in the literature. It is concluded that the TLBO algorithm presented in this study can be effectively used in the weight minimization of truss structures.

Vibration Optimization Using Immune-GA Algorithm (면역-유전알고리즘을 이용한 진동최적화)

  • 최병근;양보석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.273-279
    • /
    • 1998
  • An immune system has powerful abilities such as memory, recognition and learning to respond to invading antigens, and is applied to many engineering algorithm recently. In this paper, the combined optimization algorithm is proposed for multi-optimization problem by introducing the capability of the immune system that controls the proliferation of clones to the genetic algorithm. The optimizing ability of the proposed optimization algorithm is identified by using two multi-peak functions which have many local optimums and optimization of the unbalance response function for rotor model.

  • PDF

A hybrid imperialist competitive ant colony algorithm for optimum geometry design of frame structures

  • Sheikhi, Mojtaba;Ghoddosian, Ali
    • Structural Engineering and Mechanics
    • /
    • v.46 no.3
    • /
    • pp.403-416
    • /
    • 2013
  • This paper describes new optimization strategy that offers significant improvements in performance over existing methods for geometry design of frame structures. In this study, an imperialist competitive algorithm (ICA) and ant colony optimization (ACO) are combined to reach to an efficient algorithm, called Imperialist Competitive Ant Colony Optimization (ICACO). The ICACO applies the ICA for global optimization and the ACO for local search. The results of optimal geometry for three benchmark examples of frame structures, demonstrate the effectiveness and robustness of the new method presented in this work. The results indicate that the new technique has a powerful search strategies due to the modifications made in search module of ICACO. Higher rate of convergence is the superiority of the presented algorithm in comparison with the conventional mathematical methods and non hybrid heuristic methods such as ICA and particle swarm optimization (PSO).

Optimization Shape of Variable-Capacitance Micromotor Using Seeker Optimization Algorithm

  • Ketabi, Abbas;Navardi, Mohammad Javad
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.212-220
    • /
    • 2012
  • In the current paper, the optimization shape of a polysilicon variable-capacitance micromotor (VCM) was determined using the seeker optimization algorithm (SOA). The optimum goal of the algorithm was to find the maximum torque value and minimum ripple torque by varying the geometrical parameters. The optimization process was performed using a combination of SOA and the finite-element method (FEM). The fitness value was calculated via FEM analysis using COMSOL3.4, and SOA was realized by MATLAB7.4. The proposed method was applied to a VCM with eight and six poles at the stator and rotor, respectively. For comparison, this optimization was also performed using the genetic algorithm. The results show that the optimized micromotor using SOA had a higher torque value and lower torque ripple, indicating the validity of this methodology for VCM design.

A Novel Optimization Algorithm Inspired by Bacteria Behavior Patterns

  • Jung, Sung-Hoon;Kim, Tae-Geon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.392-400
    • /
    • 2008
  • This paper proposes a novel optimization algorithm inspired by bacteria behavior patterns for foraging. Most bacteria can trace attractant chemical molecules for foraging. This tracing capability of bacteria called chemotaxis might be optimized for foraging because it has been evolved for few millenniums. From this observation, we developed a new optimization algorithm based on the chemotaxis of bacteria in this paper. We first define behavior and decision rules based on the behavior patterns of bacteria and then devise an optimization algorithm with these behavior and decision rules. Generally bacteria have a quorum sensing mechanism that makes it possible to effectively forage, but we leave its implementation as a further work for simplicity. Thereby, we call our algorithm a simple bacteria cooperative optimization (BCO) algorithm. Our simple BCO is tested with four function optimization problems on various' parameters of the algorithm. It was found from experiments that the simple BCO can be a good framework for optimization.

Topology and size optimization of truss structures using an improved crow search algorithm

  • Mashayekhi, Mostafa;Yousefi, Roghayeh
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.779-795
    • /
    • 2021
  • In the recent decades, various optimization algorithms have been considered for the optimization of structures. In this research, a new enhanced algorithm is used for the size and topology optimization of truss structures. This algorithm, which is obtained from the combination of Crow Search Algorithm (CSA) and the Cellular Automata (CA) method, is called CA-CSA method. In the first iteration of the CA-CSA method, some of the best designs of the crow's memory are first selected and then located in the cells of CA. Then, a random cell is selected from CA, and the best design is chosen from the selected cell and its neighborhood; it is considered as a "local superior design" (LSD). In the optimization process, the LSD design is used to modify the CSA method. Numerical examples show that the CA-CSA method is more effective than CSA in the size and topology optimization of the truss structures.

Route Optimization Using Correspondent on Proxy Mobile IPv6 (Proxy Mobile IPv6에서 Correspondent를 이용한 Route Optimization 기법)

  • Choi, Young-Hyun;Lim, Hun-Jung;Chung, Tai-Myoung
    • Annual Conference of KIPS
    • /
    • 2009.11a
    • /
    • pp.579-580
    • /
    • 2009
  • Proxy Mobile IPv6에서는 같은 Local Mobility Anchor 내의 다른 Mobile Access Gateway에 있는 Mobile Node들의 패킷 전송에 있어서 발생하는 삼각 라우팅 문제는 여전히 존재한다. 이 문제점을 해결하기 위해 인터넷 드래프트 Liebsch와 Dutta에서 제안된 두 가지 Route Optimization 기법의 동작 과정을 알아보고, 상호 데이터 전송 상황에서 더 나은 성능을 제공하는 Correspondent Route Optimization 기법을 제안한다. 제안한 Route Optimization 기법은 Correspondent Flag를 추가하여 Mobile Access Gateway 간 Corresponding Binding을 완료하여, Route Optimization을 설정한다. 제안한 Correspondent Route Optimization 기법은 기존의 기법보다 상호 데이터 전송 상황에서 Route Optimization에 필요한 메시지 수가 적기 때문에 시그널링 비용이 감소하였다.