o

2%

olr

A" sts =

x| 2008, Vol. 18, No. 3, pp. 392-400

Mo

A Novel Optimization Algorithm
Inspired by Bacteria Behavior Patterns

Sung Hoon Jung® and Tae-Geon Kim’

+ Department of Information and Communication Engineerihg, Hansung University

Abstract

This paper proposes a novel optimization algorithm inspired by bacteria behavior patterns for foraging. Most bacteria
can trace attractant chemical molecules for foraging. This tracing capability of bacteria called chemotaxis might be
optimized for foraging because it has been evolved for few millenniums. From this observation, we developed a new
optimization algorithm based on the chemotaxis of bacteria in this paper. We first define behavior and decision rules
based on the behavior patterns of bacteria and then devise an optimization algorithm with these behavior and decision
rules. Generally bacteria have a quorum sensing mechanism that makes it possible to effectively forage, but we leave
its 1mplementation as a further work for simplicity. Thereby, we call our algorithm a simple bacteria cooperative
optimization (BCO) algorithm. Our simple BCO is tested with four function optimization problems on various
parameters of the algorithm. It was found from experiments that the simple BCO can be a good framework for

optimization.

Key Words @ Optimization, Bio-inspired engineering, Bacteria behavior patterns, Bacteria chemotaxis

1. Introduction

Bio—inspired engineering such as swarm intelligence
and artificial immune system based on systems-level
knowledges on an organism or cellular mechanisms has
been recently focused for engineering applications [1-3].
One of the engineering application areas is optimization
because a lot of engineering problems are related to op-
timizing parameters [4-7]. Bio-inspired optimization al-
gorithms such as genetic algorithms, ant colony opti—
mization (ACO), and particle swarm optimization [7-9]
have been widely applied to scientific and engineering
problems. Recently, two optimization algorithms based
on the bacteria chemotaxis have been introduced
[10-12].

In order to analyze the properties of bacteria, we also
have investigated bacteria behavior patterns for forag-
ing using Escherichia coli (often abbreviated to E. coli)
which 1s one of the bacteria and made the model of be-
havior patterns in the literatures [13,14]. It was found
from considerations that the model of behavior patterns
of E. coli could be a good basis for a new optimization
algorithm because their behavior patterns have shown
good tracing capability for foraging. With this ob-
servation in mind, we devised a novel optimization al-
gorithm based on the behavior patterns of E. coli.

Most bacteria, especially E. coli in this paper, can
trace attractant chemical molecules for foraging. They
usually live in a fluid (water) and swim by rotating

M X 20084 24 15¢
2t2 X} 1 20084 42 18
This research was financially supported by Hansung
University in the year of 2008.

392

several helical filaments called flagella which are con-
trolled by membrane-embedded motors. Their swim-
ming consists of runs and tumbles [15]. Run is the
stages when an E. coli swims along a relatively
straight line and tumble is when an E. coli’s swimming
direction changes. When an E. coli runs, all the flagella
motors rotate in counterclockwise (CCW, viewed from
outside of E. coli) and form a bundle. Otherwise, when
an E. coli tumbles, a few motors change the rotation
direction to clockwise (CW) and corresponding flagella
leave the bundle, then the E. coli does erratic motion
[16].

If an E. coli senses zero or negative gradients of at-
tractant chemical molecules in regular temporal base on
average, the E. coli tumbles and new direction is ran—
domly chosen. This results in random walk. Otherwise,
if an E. coli senses positive gradients of attractant
chemical molecules, then the E. coli changes the rota-
tion direction to CCW that makes the E. coli run to the
direction of last tumble. Although the tumble direction
is always random, the biased tumbling frequency ailows
the E. coli mugrate toward favorable environment or
avoid harmful chemicals. From this biased random
walk, bacteria can trace attractant chemical molecules
for foraging. This tracing capability of bacteria called
chemotaxis might be optimized for foraging because it
has been continuously evolved for few millenniums.

In order to devise an optimization algorithm from the
behavior patterns of E. coli, we first make behavior
rules and decision rules and then devise an optimization
algorithm with those rules. Generally bacteria secrete
quorum sensing molecules for detecting their quorum
from the density of quorum sensing molecules and for
communicating each other in order to deal with envi-

A Novel Optimization Algorithm Inspired by Bacteria Behavior Patterns

ronmental changes. This quorum sensing mechanism
can be used as an indirect communication mechanism
among bacteria as pheromone of ACO for cooperation.
As a result, this quorum sensing mechanism helps bac-
teria effectively forage attractant chemical molecules.
However, we didn't implement this quorum sensing
mechanism for simplicity, so we call our optimization
algornithm a simple bacteria cooperative optimization
(BCO) algorithm. We will embed this mechanism into
the simple BCO algorithm as a further work. We tested
our simple BCO algorithm with four function opti—
mization problems that have been widely used in opti-
mization methods. We analyse and discuss experimental
results.

This paper i1s organized as follows. Section 2 de-
scribes proposed simple BCO algorithm. In section 3,
experimental results of BCO are discussed. This paper
concludes in section 4.

2. Simple Bacteria Cooperative
Optimization

As described in previous section, an E. coli can do

run or tumble according to the gradients of attractant
chemical molecules, so we can consider the behavior
patterns of E. coli into two aspects. First aspect 1s how
often an E. coli decides its action and second aspect is
how an E. coli senses the gradients of attractant chem-
ical molecules and how an E. coli decides its action.
From these two aspects, we derived two rules, behavior
rules for the first aspect and decision rules for the sec-
ond aspect.

In order to model the behavior patterns of E. coli into
behavior rules and decision rules, we assume that a
modeled E. coli called artificial E. coli (AE) moves on a
discretized area (called playground in this paper) at dis-
crete time steps composed of minimum unit times. In
the playground, AEs can move one unit to eight direc—
tions for a time step. We call the move without turn of
its direction run and the length of runs the run count.
Thus, if an AE changes its direction, then its run count
becomes to zero. Under this discretized environment,
behavior rules are given as follows.

(B1) The AE decides its action for run or tumble ev-
ery B, runs.

(B2) If the run count becomes to B, (> B,), then the
AE must do tumble.

turn turn turn
and and and
run Trun rurn T Ur run
<ﬂ | | A | A | | s £ -
L.J" | | '\“IJI,»" | | | | W w14
check cheok checlk check
Warse worse better better
run count 0 1 2] 1 3 4 5 (3] 0
Bn=3 Brni=3 Bn=3 Dm="
(a)
playground
m"m“m"m"m”mb ...

...

........................

..

....................................

...

...

...

Figure 1: A working example (a) behavior rules (B, =3,B,, =7) (b) decision rules (D, =3,D, =9)

m

393

2R SA2E S| =

o

Xl 2008, Vol. 18, No. 3

Mo

An AE decides its action at every B, runs by the

first behavior rule (B1). However, although an AE con-
tinuously decides run action, it can not go to same di-
rection above maximum B, runs by the second behav-

ior rule (B2). This second behavior rule (B2) is very
important to prevent the AE from falling local optimum
that most bio-inspired optimization algorithms such as
genetic algorithms and ant colony optimization have. If
B.(>B,) is too small, then it makes AEs take long
time to reach global optimum. Otherwise, if B, is too
large, then it makes AEs fall in local optimum.
Smmilarly, if B, is too small, then an AE quickly fol-

lows local optimum and results in making it difficult to
come out the local optimum. Otherwise, if B, is too

large, then it can not fine focus to global optimum. The

two values of B, and B,, should be carefully selected.

In order to decide its action, an AE should sense the
gradients of attractant chemical - molecules. Decision
rules are related to how to sense the gradients of at—
tractant chemical molecules and how to decide its
action. Decision rules consist of two items as follows.

(D1) An AE sets current (previous) density of at-
tractant chemical molecules to the average value of re-
cent D, (D (>D,)) number of sensed attractant

chemical molecules on the discretized playground.

(D2) If the current density of attractant chemical
molecules 1s greater than the previous density, then the
AFE decides its action to run, otherwise, tumble.

We depict a working example of behavior and deci-
sion rules in case - of B, =3, B,=7 and

D, =3, D =9 in Figure 1. As shown in Figure 1 (a),

// t © discrete time //
// r. . the run count //

// B,, B, ' the minimum and maximum runs //

// E(t) : artificial E. Colis (AEs) at time ¢ //
1 t=0
2 initialize E(t)

8 while (not termination—condition)
9 do |

10 t=t+1

11 move E(t)

Algorithm 1 Simple Bacteria Cooperative Optimization (BCQO)

// D,, D the number of units for measuring current and previous densities of attractant chemical molecules
// pp, pp - the current and previous densities of attractant chemical molecules //

3 make AEs at random positions uniformly distributed within operating ranges

4 set initial directions of all AEs to random

b set initial modes of all AEs to run

6 set r,, pp, pp and of all AEs to zero

7 sense and store the amount of attractant chemical molecules at current position

12 move each AE for one unit of playground to its direction
13 increase r, of each AE

14 sense Elt)

15 sense and store the amount of attractant chemical molecules at current position
16 calculate p, and p, > decision rule (D1)

17 decide E(t)

18 if (r, modB,)=0 then [> behavior rule (B1)

19 if p, > p, then [> decision rule (D2)

20 set mode to run

21 else

22 set mode to tumble

23 end if

24 end if

25 if r.= B_ then > behavior rule (B2)

26 set mode to tumble

27 end if

28 if tumble mode then

29 set direction to random direction except for current direction and opposite direction
30 set run mode

31 set r.=0

32 end if

33 end

394

A Novel Optimization Algorithm Inspired by Bacteria Behavior Patterns

an AE decides its action at every 3 runs and it uncon-—
ditionally tumbles if the run count becomes to 7 with—
out considering the gradient of attractant chemical
molecules. Figure 1 (b) explains how to calculate the
current and previous density of attractant chemical
molecules. Let us assume that an AE is on the current
position of Figure 1 (b), then the AE should decide its
action because of B, =3. In order to decide its action,

the AE should calculate the current and previous
densities. The current (previous) density is calculated to
the average value of attractant chemical molecules on
the black circles (white circles) because of D, =3
(D, =9). In the example, the AE decides its action to

run because the current density of attractant chemical
molecules is greater than the previous one.

Table 1! Parameters of function f,

1 2 3 4 S 6 7 8 9
1.00 [0.99 | 0.98 | 0.99 | 0.98 | 0.98 | 0.99 | 0.99 | 0.99
0 0 0 0 0 10 | 10 | 10 | 10
3 3 3 3 3 3 3 3 3

0O |-10|-20| 10 | 20 | 20 | 10 | O | -10
3 3 3 3 3 3 3 3 3
10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18
0981098099 1099|099 098 |098]099| 099
10 | 20 | 20 | 20 | 20 | 20 | 10 | 10 | 10
3 3 3 3 3 3 3 3 3

-201 20 | 10 | O | -10|-20| 20 | 10 | O
3 3 3 3 3 3 3 3 3
19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27

0991098088099 0991099098004 |0.04
10 | 10 | 20 | 20 | 20 | 20 | 20 | O 0
3 3 3 3 3 3 | 30 | 30

-10 | -20 | 20 | 10 -10 | -20| O 0
3 3 3 3 3 3 | 30 | 30

SEVIGNZEENES GGG NIEN EA IC IO R A b

w o W

Based on these behavior and decision rules, we de-
vise a simple BCO algorithm as shown in Algorithm 1.
In simple BCO, AEs are first initialized and iteratively
optimized by three main operations such as move Z£(t),
sense F(t), and decide E(t). In initialize E(t), AEs are
generated at random positions uniformly distributed
within operating ranges in a playground. Their direc—
tions are randomly set and their mode is set to run and
all parameters of them are set to zero. AEs sense and
store the amount of attractant chemical molecules at

current position. The amount of attractant chemical
molecules on the playground is given by an opti-
mization function. AEs in a playground move, sense,
and decide its direction iteratively until some of them
reach to global optimum. If an AE reaches the boun-
dary of playground, then it randomly turns and goes.

3. Experimental Results

Our simple BCO was tested on typical four function
optimization problems that have been used at previous
papers [17-19]. The four functions are given in
Equation 1. Figure 2 shows the input and output rela-
tions of four functions. Function f, is a very simple

and unimodal function, which has its maximum at
z =1y =0. Function f, is a relatively simple and multi-

modal function, which has its maximum at z=—3, and
y=—&. As a very difficult function for optimization,
function f,, sometimes called Mexican hat function, has

a lot of local optimum around the global optimum lo—
cated at z =y =0. Since it has a lot of local optimum
around the global optimum, optimization algorithms can
easily fall into the local optimum and rarely come out
the local optimum. As another difficult type of opti—-
mization, function f, has many local optimum whose

values are nearly the same as those of the global
optimum. Function f, is more difficult to come out the

local optimum than the function f; because the shape of
local optimum of f, 1s peak.

In order to apply our simple BCO algorithm to func-
tion optimization, the z, y two dimensional playground
is first discretized and then attractant chemical mole-
cules are given corresponding to the optimizing function
on the discretized playground. After that, the predefined
number of AEs are generated on the discretized play-
ground at random positions uniformly distributed within
operating ranges. The generated AEs swim one unit at
a time step according to their current directions. We
call it one iteration that all AEs move one unit. If the
number of runs of an AE becomes to B, then it de-

cides its action for run and tumble. If it decides its ac-
tion to run, then it continuously goes to the current
direction. Otherwise, if tumble, then it changes its di-
rection to the other directions except for current direc—

f1 =3000—3(a” +y"), where —20 <z, y < 20

(—(EE3y_ ¥y, (-(E 10y a8y

(1.0+0.001 (2% +4*))(1.04+0.001 (2% + *))
z+ B,)2_(y+D3-)

A G 7
f4:ZAZ-e Z
i=1

(—(Z 10y (y=by (—(EF22p_ (¥ By

fo=e 3 5408 ¢ Y 40.34e 1774019 ¢ 6+
(- (& -y (- (EER - (0 (- (B - (R
0.13e +0.10e +0.07e , where —20 <z, y < 20 (1)
- /2 2\ . /2 .2\
fs=05— sin(va”+y)sin(Va"+y") —05 , where—20 <z, y < 20

, where—20 <z, y <20 and A,, B;,, C, and D, are given as Table 1

395

ro
Hi
A
or
Rl
| >
pd
It
ol
M
Ao

x| 2008, Vol. 18, No. 3

Function (Simptle)

1o6y)

Function (Mexican Hat)

0cy)

Function (Peaks}

(x.y)

Function (Custom}

Figure 2: Experimental functions: f, (simple), f, (peaks), f; (Mexican hat), f, (custom)

tion and the opposite direction of current direction. An
AE decides its action to run if the average value of
chemical molecules on the D, number of recently vis-

ited units is greater than that on the D_(> D.) number

of recently visited units. Otherwise, then it decides its
action to tumble. From this, AEs tend to go to the di-
rection that attractant chemical molecules increase. If
the run count of an AE becomes to B, (> B,), then it

should do tumble even if it goes to good direction in
order for preventing from falling local optimum. This
results in biased random walk. Figure 3 shows this
btased random walk in the simple function f;. An AE
that starts from the (—20, —20) position goes to the
center (0, 0) position. The z and y axis of playground
is discretized by 8bits(=256), respectively. Thus, the
total search space 1s 65536. In order to measure the
performances according to the parameters of behavior

and decision rules, we measured the performances on
B, =1, 2, 3, 4, 5, B =17,8, 9, 10, 11,

D =1,2,3,4,5 D =7 8,9, 10, 11, respectively.

396

Since the number of AEs is also an important parame-
ter for performances, we experimented with the 10, 100,

Function (Simple)
20 —— o | 1 =

R T e .
. ' ~ ™, —
15 F ~ S

20 -15 -10 -§ 0 5 10 15 20
X

Figure 3: Trajectory of an AE for function 1

A Novel Optimization Algorithm Inspired by Bacteria Behavior Patterns

funclon B @ of AEDs = 0

138
ek, 120

function ¥4 (# of AECs = 10}

500 number of AEs, respectively. For each experiment,
the iteration number that the simple BCO finds global
optimum is recorded and this number is used for the
measure of performances.

Table 2 shows experimental results according to the
number of AEs. For one parameter set of B, B, D ,

and D, we measured the results of ten number of ex-

periments with different random number seeds.
Therefore, the total number of experiments are
6250(=5(B,) x5(B,) x5(D,)x5(D_)x10). If the

simple BCO falls into local optimum, then it is difficult
to come out the local optimum especially in case of
complex and multimodal functions such as f; and f,. In

this case, the simple BCO may not finish its work to
find global optimum. For this case, we set the max-
imum iteration number to 400,000. We regard it fail
when the simple BCO can not find the global optimum
within the maximum iteration number. As shown in
Table 2, the simple BCO has no fail in case of f; be-

fundion 1 {# o} AECs = 100}

funclion 74 {# of AECa = 1300

(b)
Figure 4: Performance graphs according to B, and B, (a) f; (b) f,

tunchion 1 {# ot AEDs = 500}

REBEEs 5 S

fumction ¥4 (§ of AECs = 500}

cause it is an unimodal function (in other words, it has
no local optimum). Even if function f, has six number

of local peaks except for one global peak, it 1s relatively
easy that the simple BCO comes out the local peaks.
Thus, the function f, has also no fail. On the other

hand, function f; and f, have 4, 110 fails when the

number of AFEs i1s 10, respectively. This is because
function f; has local optimum around global optimum

and function f, has many local peaks near global
optimum. Since the shape of local optimum of function
f3 1s not peaks, it is relatively easy for the simple BCO
to come out the local optimum. On the other hand, the
shape of local optimum of function f, is peaks, escaping
the local optimum 1s more difficult than the case of the
function f;. Even if an optimization function has many

local optimum, the simple BCO finishes its work within
a maximum iteration in the most cases if the number of
AEs is large. This is because the probability that initial
AFEs are generated around the global optimum is large

397

o

T A SAABSE =

|

Bl

Table 2. Experimental results

X| 2008, Vol. 18, No. 3

function 7 of average star‘1d£.1rd success | fail

AEs deviation
10 274.10 | 186.70 6250 0
fi 100 84.16 55.99 6250 0
500 34.45 21.72 6250 0
10 5421.77 | 9082.36 | 6250 0
o 100 301.10 | 334.24 6250 0
500 56.68 50.31 6250 0
10 2404.37 | 12521.40 | 6246 4
f3 100 164.35 | 142.87 6250 0
500 49.35 40.58 6250 0
10 731144 | 25479.05 | 6140 110
[100 20869 | 22770 6250 0
500 63.79 41.98 6250 0

function ft {# of AECs = 10}

398

inction 14 {# of AECs = 10}

function 1 (# ¢f AECs = 100)

forcton {4 48 of AECs = 100}

(b)

Figure 5: Performance graphs according to D, and D, (a) f; (b) f,

and some AEs can have a chance to come out the local
optimum.

The standard deviations of all results except for two
cases, 10 AEs of f; and 10 AEs of f,, are very close

to the average values. This indicates that the perform-
ances of simple BCO are not quite dependent on the
parameters of behavior and decision rules and the ran-
dom number seeds. In the two cases, simple BCO
sometimes takes long time to find global optimum be-
cause it has no enough AEs to come out local optimum.
If initial AEs are located to near global optimum, then
the simple BCO can easily find the global optimum
even if it has small number of AEs. Otherwise, the
simple BCO has very difficulty to find the global opti—
mum because 1t 1s not easy to get out of local optimum
especially when the number of AEs 1s small.

In order to observe the effects of B, B,, D, , and

D

m?

for simple function and function f, for complex function

we depict the performance graphs of function f,

funclion ft (# of AECs = 509)

EBREBEEESEE

function 14 (# of AECSs = 500}

BRELSa8EE

A Novel Optimization Algorithm Inspired by Bacteria Behavior Patterns

as shown in Figure 4 and 5, respectively. As shown in
Figure 4, the simple BCO shows relatively similar per-
formances on the simple function f,, but it shows con-

siderably large differences of performances on the com-—
plex function f,. So we should select the values of B,

and B,, for complex functions more carefully than those
for simple functions. The values of B, and B, in sim-

ple functions can not largely affect to the performances
because AEs can easily approach to the global
optimum. However, bad values of B, and B, in com-

plex functions make it difficult for the simple BCO to
come out local optimum especially when the number of
AEs is small. The performances of simple function f,

are good at B, =1 and B, =7 and bad at B, =5 and
B, =7 In the three experiments. This is because fast

decision for climbing hill is best for the simple function.
However, fast decision in the complex function f, espe-

cially in the case of small AEs enables the simple BCO
to fall into local optimum and not to come out the local
optimum. If the number of AEs is enough to cover the
playground, then fast decision does not make the per-
formances of simple BCO degrade because some AEs
may be generated near global optimum. Figure 5 shows
the performances of simple BCO according to the pa-
rameters of decision rules, D, and D . Overall per-

formances are similar to those of the cases of B, and
B,, but the performances are bad at D, =5 and
D, =11 in this result. This may be because the larger
D 1s, the more the simple BCO confuses to decide its

action. As a result, we should carefully select the pa-
rameters of B,, B, D, and D, to fast go to global

optimum and to easily come out local optimum.

4. Conclusion

In this paper, we proposed a novel optimization algo-
rithm inspired by E. coli’s behavior patterns. The be-
haviors patterns of E. coli for foraging naturally opti-
mized for few millenniums were modeled to behavior
rules and decision rules. Based on these behavior and
decision rules, we devised a simple bacteria cooperative
optimization (BCO) algorithm on the discretized
playground. We tested our algorithm with four function
optimization problems under various parameters of our
algorithm. It was found from experiments that the sim-
ple BCO could be a good framework for optimization. In
this simple BCO, we did not employ the quorum sens-—
ing mechanism of bacteria to our algorithm, but we will
embed the mechanism into our algorithm as a further
work. Additionally, the other various methods to in-
crease the performances of the simple BCO algorithm
such as generating offsprings and adopting variable run
steps will be introduced. Also, the performances of BCO
will be compared to those of the other existing bio-in-

spired optimization algorithms such as genetic algo-
rithms, ant colony optimization, and particle swarm
optimization.

33z

ot

[1] R. C. Eberhart, Y. Shi, and J. Kennedy, Swarm
Intelligence. Morgan Kaufmann, 2001.

[2] E. Bonabeau, M. Dorigo, and G. Theraulaz,
Swarm Intelligence: From Natural to Artificial
Systems. Oxford University Press, 1999.

[3] L. N. de Castro and J. Timmis, Artificial
Immune Systems. A New Computational
Intelligence Approach. Oxford University Press,
2002.

[4] D. B. Fogel, “An Introduction to Simulated
Evolutionary Optimization,” IEEE Transactions
on Neural Networks, vol. 5, pp. 3-14, Jan. 1994.

[5] W.-S. Jwo, C-W. Liuy, and C.-C. Liu,
“‘Large-scale optimal VAR planning by hybrid
simulated annealing/genetic algorithm,”’
International Journal of FElectrical Power and
Energy Systems, vol. 21, pp. 39-44, Jan. 1999.

(6] C. Xudong, Q. Jingen, N. Guangzheng, Y.
Shivou, and Z. Mingliu, “An Improved Genetic
Algorithm for Global Optimization of
Electromagnetic Problems,”” IEEE Transactions
on Magnetics, vol. 37, pp. 3579-3583, Sept. 2001.

[77 M. Dorigo and 7T. Stutzle, Ant Colony
Optimization. The MIT Press, 2004.

(8] D. Goldberg, Genetic Algorithms in Search,
Optimization and Machine Learning. Reading,
MA: Addison—Wesley, 1989.

[91 M. Clerc, Particle Swarm Optimization. ISTE
Publishing Company, 2006.

[10] Y. Liu and K. M. Passino, “Biomimicry of Social
Foraging Bactenia for Distributed Optimization:
Models, Principles, and Emergent Behaviors,”
Journal of Optimization Theory and Applications,
vol. 115, pp. 603-628, Dec. 2002.

[11] K. M. Passino, “Biomimicry of Bacterial
Foraging for Distributed Optimization and
Control,” IEEE Control Systems Magazine, vol.
22, pp. 52-67, June 200Z.

[12] S. D. Muller, J. Marchetto, S. Airaghi, and P.
Koumoutsakos, “Optimization Based on Bacterial
Chemotaxis,” IEEE Transactions on Evolutionary
Computation, vol. 6, pp. 16-29, Feb. 2002.

[13] M. Kim, S. Baek, S. H. Jung, and K.-H. Cho,
“Dynamical characteristics of bacteria clustering
by self-generated attractants,” Computational
Biology and Chemistry, vol. 31, pp. 323-334, Oct.
2007.

[14] T-H. Kim, S. H. Jung, and K.-H. Cho,
“Investigations into the design principles in the
chemotactic behavior of Escherichia coli,”

399

MO

PR SAI AR S =

rok

X| 2008, Vol. 18, No. 3

BioSystems, vol. 91, pp. 171-182, Jan. 2008.
[15] H. C. Berg and D. A. Brown, “Chemotaxis in

escheichia coli analysed by three-dimensional
tracking,” Nature, vol. 239, pp. 500-504, 1972.

[16] L. Turner, W. S. Ryu, and H. C. Berg,

“Real-time imaging of fluorescent flagellar fila-
ments,” Journal of Bacteriology, vol. 182, pp.
2793-2301, May 2000.

[17] K. DeJong, An Analysis of the Behavior of a
Class of Genetic Adaptive Systems. PhD thesis,
University of Michigan, 1975.

[18] J. Andre, P. Siarry, and T. Dognon, “An im-
provement of the standard genetic algorithm
fighting premature convergence in continuous
optimization,” Advances in engineering software,
vol. 32, no. 1, pp. 49-60, 2001.

[19] S. H. Jung, “Queen-bee evolution for genetic al-
gorithms,” Electronics Letters, vol. 39, pp.
575-576, Mar. 2003.

400

X X A 4

MM Z(Sung Hoon Jung)
19913 : = Aelre W7 R AR

(&8H4Ah

1995\ © g=3e7)ed 7RSS
(F8HtA

1996 @ Z=3Er|sd 7R AA}-E s
AEAT

19963 ~ A : oS AREATEH

o T—

ZEfHd(Tae-Geon Kim
20063 : AUt PEFA-E S

(53HAh)

. like.sunshine@gmail.com

