• Title/Summary/Keyword: engineering optimization

Search Result 11,050, Processing Time 0.04 seconds

MULTI STAGE SHAPE OPTIMIZATION OF CENTRIFUGAL FAN FOR HOME APPLIANCE USING CFD (전산유체역학을 활용한 가전 제품용 원심팬 블레이드의 단계별 형상 최적화)

  • Kim, J.S.;Kang, T.G.
    • Journal of computational fluids engineering
    • /
    • v.21 no.3
    • /
    • pp.39-47
    • /
    • 2016
  • We conducted a multi-stage optimization to secure the desired performance of a centrifugal fan for home appliance in an early stage of product development. In optimization, the static pressure at the outlet of the fan is chosen as an objective function that is to be maximized, providing the required flow rate at the operating point of the fan. The optimization procedure begins with parameters for an initial baseline fan design. The baseline design is optimized by using a commercial optimization package. Accordingly, the corresponding blade models with a set of geometrical parameters are generated. Flow through a fan is simulated by solving the Reynolds-averaged Navier-Stokes equations. A multi-stage optimization scheme is employed to determine the family of optimum values for the parameters, leading to the pressure increase at the outlet of the fan. To validate the numerically obtained optimal design parameters, we fabricated the three types of fans using rapid prototyping and assessed the performance using a fan tester. Experimental results show that the design parameters at each stage satisfy the goal of optimization. The multi-stage optimization process turned out to be a useful tool in the development of a centrifugal fan.

Study on Aerodynamic Optimization Design Process of Multistage Axial Turbine

  • Zhao, Honglei;Tan, Chunqing;Wang, Songtao;Han, Wanjin;Feng, Guotai
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.130-135
    • /
    • 2008
  • An aerodynamic optimization design process of multistage axial turbine is presented in this article: first, applying quasi-three dimensional(Q3D) design methods to conduct preliminary design and then adopting modern optimization design methods to implement multistage local optimization. Quasi-three dimensional(Q3D) design methods, which mainly refer to S2 flow surface direct problem calculation, adopt the S2 flow surface direct problem calculation program of Harbin Institute of Technology. Multistage local optimization adopts the software of Numeca/Design3D, which jointly adopts genetic algorithm and artificial neural network. The major principle of the methodology is that the successive design evaluation is performed by using an artificial neural network instead of a flow solver and the genetic algorithms may be used in an efficient way. Flow computation applies three-dimensional viscosity Navier Stokes(N-S) equation solver. Such optimization process has three features: (i) local optimization based on aerodynamic performance of every cascade; (ii) several times of optimizations being performed to every cascade; and (iii) alternate use of coarse grid and fine grid. Such process was applied to optimize a three-stage axial turbine. During the optimization, blade shape and meridional channel were respectively optimized. Through optimization, the total efficiency increased 1.3% and total power increased 2.4% while total flow rate only slightly changed. Therefore, the total performance was improved and the design objective was achieved. The preliminary design makes use of quasi-three dimensional(Q3D) design methods to achieve most reasonable parameter distribution so as to preliminarily enhance total performance. Then total performance will be further improved by adopting multistage local optimization design. Thus the design objective will be successfully achieved without huge expenditure of manpower and calculation time. Therefore, such optimization design process may be efficiently applied to the aerodynamic design optimization of multistage axial turbine.

  • PDF

Topology optimization of the photovoltaic panel connector in high-rise buildings

  • Lu, Xilin;Xu, Jiaqi;Zhang, Hongmei;Wei, Peng
    • Structural Engineering and Mechanics
    • /
    • v.62 no.4
    • /
    • pp.465-475
    • /
    • 2017
  • Photovoltaic (PV) panels are used in high-rise buildings to convert solar energy to electricity. Due to the considerable energy consumption of high-rise buildings, applying PV technology is of great significance to energy saving. In the application of PV panels, one of the most important construction issues is the connection of the PV panel with the main structures. One major difficulty of the connection design is that the PV panel connection consists of two separate components with coupling and indeterminate dimension. In this paper, the gap element is employed in these two separated but coupled components, i.e., hook and catch. Topology optimization is applied to optimize and design the cross-section of the PV panel connection. Pareto optimization is conducted to operate the optimization subject to multiple load scenarios. The initial design for the topology optimization is determined by the common design specified by the Technical Code for Glass Curtain Wall Engineering (JGJ 102-2003). Gravity and wind load scenarios are considered for the optimization and numerical analysis. Post analysis is conducted for the optimal design obtained by the topology optimization due to the manufactory requirements. Generally, compared with the conventional design, the optimized connector reduces material use with improved structural characteristics.

Lion Optimization Algorithm (LOA): A nature-inspired metaheuristic algorithm

  • Yazdani, Maziar;Jolai, Fariborz
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.1
    • /
    • pp.24-36
    • /
    • 2016
  • During the past decade, solving complex optimization problems with metaheuristic algorithms has received considerable attention among practitioners and researchers. Hence, many metaheuristic algorithms have been developed over the last years. Many of these algorithms are inspired by various phenomena of nature. In this paper, a new population based algorithm, the Lion Optimization Algorithm (LOA), is introduced. Special lifestyle of lions and their cooperation characteristics has been the basic motivation for development of this optimization algorithm. Some benchmark problems are selected from the literature, and the solution of the proposed algorithm has been compared with those of some well-known and newest meta-heuristics for these problems. The obtained results confirm the high performance of the proposed algorithm in comparison to the other algorithms used in this paper.

Getting Feedback on a Compiler's Optimization Decisions, Enabling More Code-Optimization Opportunities

  • Min, Gyeong Il;Park, Sewon;Han, Miseon;Kim, Seon Wook
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.6
    • /
    • pp.450-454
    • /
    • 2015
  • Short execution time is the major performance factor for computer systems. This performance factor is directly determined by code quality, which is influenced by the compiler's optimizations. However, a compiler has limitations when optimizing source code due to insufficient information. Thus, if programmers can learn the reasons why a compiler fails to apply optimizations, they can rewrite code that is more easily understood by the compiler, and thus improve performance. In this paper, we propose a compiler that provides a programmer with reasons for failed optimization and recognizes programmer's additional information to obtain better optimization. As a result, we obtain performance improvement, i.e., reducing execution time and code size, by taking advantage of additional optimization opportunities.

Hull Form Optimization using Parametric Modification Functions and Global Optimization (전역 최적화기법과 파라메트릭 변환함수를 이용한 선형 최적화)

  • Kim, Hee-Jung;Chun, Ho-Hwan;An, Nam-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.590-600
    • /
    • 2008
  • This paper concerns the development of a designer friendly hull form parameterization and its coupling with advanced global optimization algorithms. As optimization algorithms, we choose the Partial Swarm Optimization(PSO) recently introduced to solve global optimization problems. Most general-purpose optimization softwares used in industrial applications use gradient-based algorithms, mainly due to their convergence properties and computational efficiency when a relatively few number of variables are considered. However, local optimizers have difficulties with local minima and non-connected feasible regions. Because of the increase of computer power and of the development of efficient Global Optimization (GO) methods, in recent years nongradient-based algorithms have attracted much attention. Furthermore, GO methods provide several advantages over local approaches. In the paper, the derivative-based SQP and the GO approach PSO are compared with their relative performances in solving some typical ship design optimization problem focusing on their effectiveness and efficiency.

Economic Dispatch Using Hybrid Particle Swarm Optimization with Prohibited Operating Zones and Ramp Rate Limit Constraints

  • Prabakaran, S.;Senthilkuma, V.;Baskar, G.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1441-1452
    • /
    • 2015
  • This paper proposes a new Hybrid Particle Swarm Optimization (HPSO) method that integrates the Evolutionary Programming (EP) and Particle Swarm Optimization (PSO) techniques. The proposed method is applied to solve Economic Dispatch(ED) problems considering prohibited operating zones, ramp rate limits, capacity limits and power balance constraints. In the proposed HPSO method, the best features of both EP and PSO are exploited, and it is capable of finding the most optimal solution for the non-linear optimization problems. For validating the proposed method, it has been tested on the standard three, six, fifteen and twenty unit test systems. The numerical results show that the proposed HPSO method is well suitable for solving non-linear economic dispatch problems, and it outperforms the EP, PSO and other modern metaheuristic optimization methods reported in the recent literatures.

Generalized evolutionary optimum design of fiber-reinforced tire belt structure

  • Cho, J.R.;Lee, J.H.;Kim, K.W.;Lee, S.B.
    • Steel and Composite Structures
    • /
    • v.15 no.4
    • /
    • pp.451-466
    • /
    • 2013
  • This paper deals with the multi-objective optimization of tire reinforcement structures such as the tread belt and the carcass path. The multi-objective functions are defined in terms of the discrete-type design variables and approximated by artificial neutral network, and the sensitivity analyses of these functions are replaced with the iterative genetic evolution. The multi-objective optimization algorithm introduced in this paper is not only highly CPU-time-efficient but it can also be applicable to other multi-objective optimization problems in which the objective function, the design variables and the constraints are not continuous but discrete. Through the illustrative numerical experiments, the fiber-reinforced tire belt structure is optimally tailored. The proposed multi-objective optimization algorithm is not limited to the tire reinforcement structure, but it can be applicable to the generalized multi-objective structural optimization problems in various engineering applications.

Design of steel frames by an enhanced moth-flame optimization algorithm

  • Gholizadeh, Saeed;Davoudi, Hamed;Fattahi, Fayegh
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.129-140
    • /
    • 2017
  • Structural optimization is one of the popular and active research areas in the field of structural engineering. In the present study, the newly developed moth-flame optimization (MFO) algorithm and its enhanced version termed as enhanced moth-flame optimization (EMFO) are employed to implement the optimization process of planar and 3D steel frame structures with discrete design variables. The main inspiration of this optimizer is the navigation method of moths in nature called transverse orientation. A number of benchmark steel frame optimization problems are solved by the MFO and EMFO algorithms and the results are compared with those of other meta-heuristics. The obtained numerical results indicate that the proposed EMFO algorithm possesses better computational performance compared with other existing meta-heuristics.

Zero-Stress Member Selection for Sizing Optimization of Truss Structures (트러스 구조물 사이즈 최적화를 위한 무응력 부재의 선택)

  • Lee, Seunghye;Lee, Jonghyun;Lee, Kihak;Lee, Jaehong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.1
    • /
    • pp.61-70
    • /
    • 2021
  • This paper describes a novel zero-stress member selecting method for sizing optimization of truss structures. When a sizing optimization method with static constraints is implemented, the member stresses are affected sensitively with changing the variables. However, because some truss members are unaffected by specific loading cases, zero-stress states are experienced by the elements. The zero-stress members could affect the computational cost and time of sizing optimization processes. Feature selection approaches can be then used to eliminate the zero-stress member from the whole variables prior to the process of optimization. Several numerical truss examples are tested using the proposed methods.