DOI QR코드

DOI QR Code

Zero-Stress Member Selection for Sizing Optimization of Truss Structures

트러스 구조물 사이즈 최적화를 위한 무응력 부재의 선택

  • Lee, Seunghye (Dept. of Architectural Engineering, Sejong Univ.) ;
  • Lee, Jonghyun (Dept. of Architectural Engineering, Sejong Univ.) ;
  • Lee, Kihak (Dept. of Architectural Engineering, Sejong Univ.) ;
  • Lee, Jaehong (Dept. of Architectural Engineering, Sejong Univ.)
  • 이승혜 (세종대학교 건축공학과) ;
  • 이종현 (세종대학교 건축공학과) ;
  • 이기학 (세종대학교 건축공학과) ;
  • 이재홍 (세종대학교 건축공학과)
  • Received : 2020.12.17
  • Accepted : 2021.01.05
  • Published : 2021.03.15

Abstract

This paper describes a novel zero-stress member selecting method for sizing optimization of truss structures. When a sizing optimization method with static constraints is implemented, the member stresses are affected sensitively with changing the variables. However, because some truss members are unaffected by specific loading cases, zero-stress states are experienced by the elements. The zero-stress members could affect the computational cost and time of sizing optimization processes. Feature selection approaches can be then used to eliminate the zero-stress member from the whole variables prior to the process of optimization. Several numerical truss examples are tested using the proposed methods.

Keywords

References

  1. Haftka, R. T., & Gurdal, Z., "Elements of structural optimization", 3rd ed., Springer Science Business Media Dordrebht, 2012.
  2. Kar, A. K., "Bio inspired computing-A review of algorithms and scope of applications", Expert Systems with Applications, Vol.59, pp.20-32, 2016, doi: 10.1016/j.eswa.2016.04.018
  3. Asadpoure, A., Tootkaboni, M., & Guest, J. K., "Robust topology optimization of structures with uncertainties in stiffness - Application to truss structures", Computers & Structures, Vol.89, No.11-12, pp.1131-1141, 2011, doi: 10.1016/j.compstruc.2010.11.004
  4. Fenton, M., McNally, C., Byrne, J., Hemberg, E., McDermott, J., & O'Neill, M., "Automatic innovative truss design using grammatical evolution", Automation in Construction, Vol.39, pp.59-69, 2014, doi: 10.1016/j.autcon.2013.11.009
  5. Lim, J., Lee, B., & Lee, I., "Sequential optimization and reliability assessment based on dimension reduction method for accurate and efficient reliability-based design optimization", Journal of Mechanical Science and Technology, Vol.29, No.4, pp.1349-1354, 2015, doi: 10.1007/s12206-015-0303-y
  6. Inza, I., Larranaga, P., Etxeberria, R., & Sierra, B., "Feature Subset Selection by Bayesian network-based optimization", Artificial intelligence, Vol.123, No.1-2, pp.157-184, 2000, doi: 10.1016/S0004-3702(00)00052-7
  7. Venkayya, V. B., "Design of optimum structures", Computers & Structures, Vol.1, No.1-2, pp.265-309, 1971, doi: 10.1016/0045-7949(71)90013-7
  8. Rizzi, P. (1976). Optimization of multi-constrained structures based on optimality criteria?. Proceedings of the 17th Structures, Structural Dynamics, and Materials Conference, USA, pp.1547, doi: 10.2514/6.1976-1547
  9. Lee, K. S., & Geem, Z. W., "A new structural optimization method based on the harmony search algorithm", Computers & Structures, Vol.82, No.9-10, pp.781-798, 2004, doi: 10.1016/j.compstruc.2004.01.002
  10. Schmit Jr., L. A., & Farshi, B., "Some Approximation Concepts for Structural Synthesis", AIAA journal, Vol.12, No.5, pp.692-699, 1974, doi: 10.2514/3.49321
  11. Matsumoto, M., & Nishimura, T., "Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator", ACM Transactions on Modeling and Computer Simulation, Vol.8, No.1, pp.3-30, 1998, doi: 10.1145/272991.272995
  12. Saeys, Y., Inza, I., & Larranaga, P., "A review of feature selection techniques in bioinformatics", Bioinformatics, Vol.23, No.19, pp.2507-2517, 2007, doi: 10.1093/bioinformatics/btm344
  13. Yu, L., & Liu, H., "Efficient Feature Selection via Analysis of Relevance and Redundancy", Journal of Machine Learning Research, Vol.5, pp.1205-1224, 2004, Retrieved from https://jmlr.org/papers/volume5/yu04a/yu04a.pdf
  14. Guyon, I., Weston, J., Barnhill, S., & Vapnik, V., "Gene Selection for Cancer Classification using Support Vector Machines", Machine Learning, Vol.46, No.1-3, pp.389-422, 2002, doi: 10.1023/A:1012487302797
  15. Jovic, A., Brkic, K., & Bogunovic, N. (2015). A review of feature selection methods with applications. Proceedings of the 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Croatia, pp.1200-1205, doi: 10.1109/MIPRO.2015.7160458
  16. Breiman, L., "Random forests", Machine Learning, Vol.45, pp.5-32, 2001, Retrieved from https://link.springer.com/content/pdf/10.1023/A:1010933404324.pdf
  17. Boulesteix, A. L., Bender, A., Bermejo, J. L., & Strobl, C., "Random forest Gini importance favours SNPs with large minor allele frequency: impact, sources and recommendations", Brief Bioinform, Vol.13, No.3, pp.292-304, 2012, doi: 10.1093/bib/bbr053
  18. Stoppiglia, H., Dreyfus, G., Dubois, R., & Oussar, Y., "Ranking a Random Feature for Variable and Feature Selection", Journal of Machine Learning Research, Vol.3, pp.1399-1414, 2003, doi: 10.1162/153244303322753733
  19. Adeli, H., & Kumar, S., "Distributed Genetic Algorithm for Structural Optimization", Journal of Aerospace Engineering, Vol.8, No.3, pp.156-163, 1995, doi: 10.1061/(ASCE)0893-1321(1995)8:3(156)
  20. Berke, L., & Khot, N. S. (1987). Structural Optimization Using Optimality Criteria. Proceedings of the NATO Advanced Study Institute on Computer Aided Optimal Design: structural and mechanical systems on Computer aided optimal design: structural and mechanical systems, Vol.27, pp.271-311, doi: 10.1007/978-3-642-83051-8_7