• Title/Summary/Keyword: engineering optimization

Search Result 11,061, Processing Time 0.036 seconds

Preliminary Study of Modulization Construction Method on Concrete Structure for High-rise Building (고층 콘크리트 구조물 모듈화 시공 시스템 기초연구)

  • Koh, Min-Hyeok;Cho, Chang-Yeon;Shin, Tae-Hong;Kwon, Soon-Wook;Kim, Yea-Sang;Chin, Sang-Yoon
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.334-339
    • /
    • 2008
  • Construction that over 70% of the structure consists of concrete gets bigger and higher gradually and the demand of that is increasing as well. However, it's not easy to supply young and skilled persons on construction site because of social avoidance phenomena about 3D occupation, so it causes serious problems like aging and shortage of technicians. To solve the problems, executives related to the construction field make a management effort in various ways such as construction period shortening, labor productivity improvement and good quality but recently, they have an increasing interest in the necessity of the modularization of the high-rise building and the automation of the engineering development for the strengthening of international competitive power as more active and long-term alternatives. Therefore, this study is to propose the roadmap in order to make lots of efforts in developing construction technologies of high-rise buildings by performing a foundation study, the strategy for 4-step research development, on modularized construction system of concrete structure of high-rise buildings through domestic and foreign preceding research analyses associated with optimal design modularization technique, module factory automation and assembly automation of modularized objects.

  • PDF

Enzymatic Hydrolysis Optimization of a Snow Crab Processing By-product (홍게 가공부산물의 효소적 단백질 가수분해 최적화)

  • Jang, Jong-Tae;Seo, Won-Ho;Baek, Hyung-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.622-627
    • /
    • 2009
  • The objectives of this study were to evaluate a protease suitable for the enzymatic hydrolysis of a snow crab processing by-product (SPB) and to optimize the hydrolysis conditions using response surface methodology (RSM). The SPB was hydrolyzed at $50^{\circ}C$ and pH 7.0-7.2 to obtain various degree of hydrolysis (DH) using Flavourzyme at an enzyme/substrate (E/S) ratio of 3.0%. The reaction progress curve exhibited an initial fast reaction rate followed by a slowing of the rate. The DH was increased to 30% at 90 min with a final DH 32 to 36%. A central composite experimental design having three independent variables (reaction temperature, reaction time, and E/S ratio) with five levels was used to optimize the enzymatic hydrolysis conditions. Based on the DH data, the optimum reaction conditions for the enzymatic hydrolysis of the SPB were a temperature of $51.8^{\circ}C$, reaction time of 4 hr 45 min, and an E/S ratio of 3.8%. It was demonstrated that the enzymatic hydrolysate of SPB could be used as a flavoring agent or a source of precursors for the production of reaction flavors.

Enhancing Robustness of Floor Vibration Control by Using Asymmetric Tuned Mass Damper (비대칭 동조질량감쇠기를 활용한 바닥진동제어의 강건성 향상 방안)

  • Ko, A Ra;Lee, Cheol Ho;Kim, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.177-189
    • /
    • 2014
  • When floor vibration problems occur in existing buildings, TMD (tuned mass damper) can be a viable alternative to resolving the problem. Only when TMD has been exactly tuned to the natural frequency of the floor, it can control the vibration as intended in design. However, TMD gets inefficient in the situation where the natural frequency changes as a result of the uncontrollable variation of the floor mass weight. This physical phenomenon is often called as TMD-off-tuning. This study proposes asymmetric TMD for enhancing the robustness of floor vibration control against uncertain natural frequencies. The proposed TMD features two asymmetric linear springs such that the floor vibrational energy can be dissipated through both the translational and rotational motion. An easy-to-use graphical optimization method was developed in this study. The asymmetric TMD proposed outperformed in vibration control by 28% compared to that of conventional TMD. The robustness of asymmetric TMD of this study was two times higher than that of conventional TMD.

Development of a New Advanced Water Treatment Process (PMR) and Assessment of Its Treatment Efficiency (고도정수처리 신(新) 공정(PMR)개발 및 처리효율 평가)

  • Ahn, Hyo-Won;Noh, Soo-Hong;Kwon, Oh-Sung;Park, Yong-Hyo;Wang, Chang-Keun
    • Membrane Journal
    • /
    • v.18 no.2
    • /
    • pp.157-167
    • /
    • 2008
  • Removal of organic substances and taste/odor control are ones of the main issues in water supply, resulting in introduction of advanced processes such as ozon/GAC, or PAC. However, raw water quality deteriorates, new pollutants advent, so water quality is not acceptable enough even with those existing advanced processes. In this paper, a new advanced water treatment process using PAC slurry blanket, where PAC particles stay in the basin as slurry blanket, coupled with submerged membranes is introduced. A pilot plant $(80m^3/day)$ was installed to assess the performance of this new process using actual raw water, and DOC was removed higher than 90% in the beginning and $70{\sim}80%$ afterwards, while 2-MIB and geosmin were removed completely. This new process still requires future study on process optimization and long-term assessment, however it seems highly possible to countermeasure as a new advanced process with high removal efficiency.

Depth Upsampling Method Using Total Generalized Variation (일반적 총변이를 이용한 깊이맵 업샘플링 방법)

  • Hong, Su-Min;Ho, Yo-Sung
    • Journal of Broadcast Engineering
    • /
    • v.21 no.6
    • /
    • pp.957-964
    • /
    • 2016
  • Acquisition of reliable depth maps is a critical requirement in many applications such as 3D videos and free-viewpoint TV. Depth information can be obtained from the object directly using physical sensors, such as infrared ray (IR) sensors. Recently, Time-of-Flight (ToF) range camera including KINECT depth camera became popular alternatives for dense depth sensing. Although ToF cameras can capture depth information for object in real time, but are noisy and subject to low resolutions. Recently, filter-based depth up-sampling algorithms such as joint bilateral upsampling (JBU) and noise-aware filter for depth up-sampling (NAFDU) have been proposed to get high quality depth information. However, these methods often lead to texture copying in the upsampled depth map. To overcome this limitation, we formulate a convex optimization problem using higher order regularization for depth map upsampling. We decrease the texture copying problem of the upsampled depth map by using edge weighting term that chosen by the edge information. Experimental results have shown that our scheme produced more reliable depth maps compared with previous methods.

Study on Optimization of Detection System of Prompt Gamma Distribution for Proton Dose Verification (양성자 선량 분포 검증을 위한 즉발감마선 분포측정 장치 최적화 연구)

  • Lee, Han Rim;Min, Chul Hee;Park, Jong Hoon;Kim, Seong Hoon;Kim, Chan Hyeong
    • Progress in Medical Physics
    • /
    • v.23 no.3
    • /
    • pp.162-168
    • /
    • 2012
  • In proton therapy, in vivo dose verification is one of the most important parts to fully utilize characteristics of proton dose distribution concentrating high dose with steep gradient and guarantee the patient safety. Currently, in order to image the proton dose distribution, a prompt gamma distribution detection system, which consists of an array of multiple CsI(Tl) scintillation detectors in the vertical direction, a collimator, and a multi-channel DAQ system is under development. In the present study, the optimal design of prompt gamma distribution detection system was studied by Monte Carlo simulations using the MCNPX code. For effective measurement of high-energy prompt gammas with enough imaging resolution, the dimensions of the CsI(Tl) scintillator was determined to be $6{\times}6{\times}50mm^3$. In order to maximize the detection efficiency for prompt gammas while minimizing the contribution of background gammas generated by neutron captures, the hole size and the length of the collimator were optimized as $6{\times}6mm^2$ and 150 mm, respectively. Finally, the performance of the detection system optimized in the present study was predicted by Monte Carlo simulations for a 150 MeV proton beam. Our result shows that the detection system in the optimal dimensions can effectively measure the 2D prompt gamma distribution and determine the beam range within 1 mm errors for 150 MeV proton beam.

Secondary Flow Patterns of Liquid Ejector with Computational Analysis (액체상 이젝터의 2차측 액체 송출량 특성 전산해석)

  • Kwon, Kwisung;Yun, Jinwon;Sohn, Inseok;Seo, Yongkyo;Yu, Sangseok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.2
    • /
    • pp.183-190
    • /
    • 2015
  • An ejector is a type of non-powered pump that is used to supply a secondary flow via the ejection of a primary flow. It is utilized in many industrial fields, and is used for fueling the vehicle because of less failures and simple structure. Since most of ejectors in industry are gas-to-gas and liquid to gas ejector, many research activities have been reported in optimization of gas ejector. On the other hand, the liquid ejector is also applied in many industry but few research has been reported. The liquid ejector occurs cavitation, and it causes damage of parts. Cavitation has bees observed at the nozzle throat at the specified pressure. In this study, a two-dimensional axisymmetric simulation of a liquid-liquid ejector was carried out using five different parameters. The angle of the nozzle plays an important role in the cavitation of a liquid ejector, and the performance characteristics of the flow ratio showed that an angle of $35^{\circ}$ was the most advantageous. The simulation results showed that the performance of the liquid ejector and the cavitation effect have to be considered simultaneously.

Estimation of Human Lower-Extremity Muscle Force Under Uncertainty While Rising from a Chair (의자에서 일어서는 동작 시 불확실성을 고려한 인체 하지부 근력 해석)

  • Jo, Young Nam;Kang, Moon Jeong;Chae, Je Wook;Yoo, Hong Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1147-1155
    • /
    • 2014
  • Biomechanical models are often used to predict muscle and joint forces in the human body. For estimation of muscle forces, the body and muscle properties have to be known. However, these properties are difficult to measure and differ from person to person. Therefore, it is necessary to predict the change in muscle forces depending on the body and muscle properties. The objective of the present study is to develop a numerical procedure for estimating the muscle forces in the human lower extremity under uncertainty of body and muscle properties during rising motion from a seated position. The human lower extremity is idealized as a multibody system in which eight Hill-type muscle force models are employed. Each model has four degrees of freedom and is constrained in the sagittal plane. The eight muscle forces are determined by minimizing the metabolic energy consumption during the rising motion. Uncertainty analysis is performed using a first-order reliability method. The one-standard-deviation range of agonistic muscle forces is calculated to be about 150-300 N.

Process Optimization of ITO Film on PC Substrate Deposited by In-line Sputtering Method for a Resistive-type Touch Panel (인라인 스퍼터링에 의한 저항막 방식 터치패널용 ITO 기판 제조공정 최적화 기술)

  • Ahn, M.H.;Cho, E.S.;Kwon, S.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.6
    • /
    • pp.440-446
    • /
    • 2009
  • Indium tin oxide(ITO) substrate is one of the key components of the touch panel and its sputtering process is dependent on the characteristics of various touch panel, such as driving type, size of panel, and the intended use. In this study, we optimized the sputtering condition of ITO film on polycarbonate(PC) by using in-line sputtering method for the application to resistive type touch panel. We varied the $O_2$/Ar gas ratio, sputtering power, pressure and moving speed of substrate to deposit ITO films at room temperature with the base vacuum of $1{\times}10^{-6}\;torr$. The sheet resistance and its uniformity, the transmittance, the thickness of the ITO film on PC substrate are investigated and analyzed. The optimized process parameters are as follows : the sheet resistance is $500{\pm}50\;{\Omega}$/□, the uniformity of sheet resistance is lower than 10%, the transmittance is higher than 87 % at 550nm, and the thickness is about 120~250. The optimized deposition conditions by in-line sputtering method can be applied to the actual mass production for the ITO film manufacturing technology.

Comparison and Optimization of Flux Chamber Methods of Methane Emissions from Landfill Surface Area (매립지 표면의 메탄 발산량 실측을 위한 플럭스 챔버의 방법론적 비교와 최적화)

  • Jeong, Jin Hee;Kang, Su Ji;Lim, Jong Myoung;Lee, Jin-Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.10
    • /
    • pp.535-542
    • /
    • 2016
  • As one of the most cost-effective methods for surface emission measurements, flux chamber method has been used worldwide. It can be classified into two types: SFC (with slope method) and DFC (with steady-state method). SFC (static flux chamber) type needs only simple equipment and is easy to handle. However, the value of flux might vary with SFC method, because it assumes that the change of concentration in chamber is linear with time. Although more specific equipments are required for DFC (dynamic flux chamber) method, it can lead to a constant result without any ambiguity. We made a self-designed DFC using a small and compact kit, which recorded good sample homogeneity (RSD < 5%) and recovery ( > 90%). Relative expanded measurement uncertainty of this improved DFC method was 7.37%, which mainly came from uncontrolled sweep air. The study shows that the improved DFC method can be used to collect highly reliable emission data from large landfill area.