• Title/Summary/Keyword: engineering measurement

Search Result 16,896, Processing Time 0.042 seconds

On-Machine Measurement of Sculptured Surfaces Based on CAD/CAM/CAI Integration : I. Measurement Error Modeling (CAD/CAM/CAI 통합에 기초한 자유곡면의 On-Machine Measurement : I. 측정오차 모델링)

  • Cho, Myeong-Woo;Lee, Se-Hee;Seo, Tae-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.172-181
    • /
    • 1999
  • The objective of this research is to develop a measurement error model for sculptured surfaces in On-Machine Measurement (OMM) process based on a closed-loop configuration. The geometric error model of each axis of a vertical CNC Machining center is derived using a 4${\times}$4 homogeneous transformation matrix. The ideal locations of a touch-type probe for the scupltured surface measurement are calculated from the parametric surface representation and X-, Y- directional geometric errors of the machine. Also, the actual coordinates of the probe are calculated by considering the pre-travel variation of a probe and Z-directional geometric errors. Then, the step-by-step measurement error analysis method is suggested based on a closed-loop configuration of the machining center including workpiece and probe errors. The simulation study shows the simplicity and effectiveness of the proposed error modeling strategy.

  • PDF

Pipe Flange Measurement System Using Draw-Wire Sensor (Draw-Wire센서를 이용한 파이프 플랜지 계측시스템)

  • 윤재웅;윤강섭;이수철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.62-69
    • /
    • 2003
  • In most shipyards, the measurement of 3-dimensional relative position of pipes should be connected in the block depends on the manual operation. It results a very tedious and inefficient procedure, thus the proper measurement system is needed to improve productivity and accuracy. This paper describes the development of pipe measurement system including system concepts, measuring procedures, system calibration, and its accuracy and productivity. And also, the possibility and things to be improved for application in shipyard are discussed in this paper.

Exploration of temperature effect on videogrammetric technique for displacement monitoring

  • Zhou, Hua-Fei;Lu, Lin-Jun;Li, Zhao-Yi;Ni, Yi-Qing
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.135-153
    • /
    • 2020
  • There has been a sustained interest towards the non-contact structural displacement measurement by means of videogrammetric technique. On the way forward, one of the major concerns is the spurious image drift induced by temperature variation. This study therefore carries out an investigation into the temperature effect of videogrammetric technique, focusing on the exploration of the mechanism behind the temperature effect and the elimination of the temperature-caused measurement error. 2D videogrammetric measurement tests under monotonic or cyclic temperature variation are first performed. Features of measurement error and the casual relationship between temperature variation and measurement error are then studied. The variation of the temperature of digital camera is identified as the main cause of measurement error. An excellent linear relationship between them is revealed. After that, camera parameters are extracted from the mapping between world coordinates and pixels coordinates of the calibration targets. The coordinates of principle point and focal lengths show variations well correlated with temperature variation. The measurement error is thought to be an outcome mainly attributed to the variation of the coordinates of principle point. An approach for eliminating temperature-caused measurement error is finally proposed. Correlation models between camera parameters and temperature are formulated. Thereby, camera parameters under different temperature conditions can be predicted and the camera projective matrix can be updated accordingly. By reconstructing the world coordinates with the updated camera projective matrix, the temperature-caused measurement error is eliminated. A satisfactory performance has been achieved by the proposed approach in eliminating the temperature-caused measurement error.

Development of Light Transmission Fluctuation for Particle Measurement in Solid-Gas Two Phase Flows

  • YANG, Bin;WANG, Zhan-ping;HE, Yuan;CAI, Xiao-Shu
    • Particle and aerosol research
    • /
    • v.12 no.1
    • /
    • pp.21-26
    • /
    • 2016
  • In order to realize In-line and convenient measurement for solid-gas two phase flows, Light Transmission Fluctuation (LTF) based on the random variation of transmitted light intensity, light scattering theory and cross-correlation method was presented for online measurement of particle size, concentration and velocity. The statistical relationship among transmitted light intensity, particle size and particle number in measurement zone was described by Beer-Lambert Law. Accordingly, the particle size and concentration were determined from the fluctuation signal of transmitted light intensity. Simultaneously, the particle velocity was calculated by cross-correlation analysis of two neighboring light beams. By considering the influence of concentration variation in industrial applications, the improved algorithm based on spectral analysis of transmitted light intensity was proposed to improve measurement accuracy and stability. Therefore, the online measurement system based on LTF was developed and applied to measure pulverized coal in power station and raw material in cement plant. The particle size, concentration and velocity of powder were monitored in real-time. It can provide important references for optimal control, energy saving and emission reduction of energy-intensive industries.

A Management Performance Measurement Model of the Construction Engineering Firm -Focused on 'H' Construction Engineering Firm- (건설엔지니어링 기업의 경영성과측정모형 -H사의 사례를 중심으로-)

  • Park Chan-Sik;Kim Hyun-Jun;Jeon Yong-Seok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.2 s.18
    • /
    • pp.202-210
    • /
    • 2004
  • Under the current competitive business environment, the complexity of procurement method, and the lack of engineering capacity in the construction engineering industry, a construction engineering firms require the business strategy and its performance measurement system. This study suggests a performance measurement model that could follow 'H' construction engineering firm's vision and strategy. The model utilizes the concept of Balanced Scorecard. The study proposes the four main performance perspectives such as financial, growth, internal efficiency, and improvement & learning through the long-term strategy analysis, SWOT analysis, and interviews of the employees. Also the study develops the critical success factor and the key performance indicators. The usefulness of the performance measurement model is validated through the gap analysis such as alignment analysis and consensus analysis.

Study on Extension of the 6-DOF Measurement Area for a Model Ship by Developing Auto-tracking Technology for Towing Carriage in Deep Ocean Engineering Tank

  • Jung, Jae-sang;Lee, Young-guk;Seo, Min-guk;Park, In-Bo;Kim, Jin-ha;Kang, Dong-bae
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.50-60
    • /
    • 2022
  • The deep ocean engineering basin (DOEB) of the Korea Research Institute of Ship and Ocean Engineering (KRISO) is equipped with an extreme-environment reproduction facility that can analyze the motion characteristics of offshore structures and ships. In recent years, there have been requirements for a wide range of six-degree-of-freedom (6-DOF) motion measurements for performing maneuvering tests and free-running tests of target objects (offshore structures or ships). This study introduces the process of developing a wide-area motion measurement technology by incorporating the auto-tracking technology of the towing carriage system to overcome the existing 6-DOF motion measurement limitation. To realize a wide range of motion measurements, the automatic tracking control system of the towing carriage in the DOEB was designed as a speed control method. To verify the control performance, the characteristics of the towing carriage according to the variation in control gain were analyzed. Finally, a wide range of motions was tested using a model test object (a remotely operated vehicle (ROV)), and the wide-area motion measurement technology was implemented using an automatic tracking control system for a towing carriage.

Development of an Investigation Method for Variation Factors of Measurement Processes (측정 프로세스의 변동 요인 조사 방법 개발)

  • Choi, In-Soo;Kang, Chang Wook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.2
    • /
    • pp.72-81
    • /
    • 2016
  • There can be included a variety of uncertainties in all measurement results whether we can perceive or not on the causes. These uncertainties may end up in lowering the reliability of measurement results and also deteriorate the level of quality. For the purpose, we tried to combine the strengths of measurement uncertainty and measurement system analysis together to present a practical flowchart so as to verify those potential variation factors in general measurement processes. As a case study, we did an experiment and gathered data on the length between two holes of an engine cylinder head which is a core part for vehicles with a coordinate measuring machine and estimated nine uncertainty factors of it. Consequently, it was identified that the four primary factors among the nine which were related to the measurement standard, random errors or spread of the repeat measurements, differences between the coefficients of thermal expansion and the environment especially had been the influence around the laboratory. Since it is impossible to analyze the equipment and appraisal variations respectively through the only measurement uncertainty, we have used the measurement system analysis following the flowchart. Showing the result of being just about 0.5% lower for the appraisal variation, and the equipment variation occupied about 7% for the total Gage R&R. Through this research, we have come to a conclusion that much more detail analysis on variation factors can be possible to be identified in measurement processes by using the developed flowchart which is composed of measurement uncertainty and measurement system analysis. Therefore, we expect engineers who are involved in quality and measurements to utilize this developed method.

Improvement of Work Environment Measurement in Construction Industry by Survey (설문조사를 통한 건설업 작업환경측정제도 개선방안에 관한 연구)

  • Woo Je, Lee;Won, Choi;Ki Youn, Kim
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.4
    • /
    • pp.456-464
    • /
    • 2022
  • Objectives: The Purpose of this study is to improve work environment measurement in construction industry by survey. Especially, this study focused on the defferences between construction staffs(safety manger, health manager) and work environment measurement institution workers. Methods: Survey targets are construction staffs(safety manger, health manager) and work environment measurement institution workers. Respondent was selected by respective councils and conferences. A questionnaire consisting of items on general characteristics and the improvement of work environment measurement in construction industry. Results: Total of 134 people(39 safety managers, 27 health managers, 68 work environment measurement institution workers) responded to survey. Overall, current work environment measurement was deemed unsuitable for construction industry. There was a significant difference between construction staff and work environment institution workers in some question. On the other hand, there was no noticeable significant difference in general characteristics. Conclusions: As a result of survey, current work environment measurement was deemed unsuitable for construction industry in terms of measurement method, measurement timing, and actual site improvement. In addition, there is a statistically significant differences in response between construction staff and work environment measurement institution workers, so it is necessary to reflect both opinions in order to improve work environment measurement in construction industry.

A Study on the Calibration of Shape Measurement System Using Digital moire (Digital moire 형상측정 시스템의 보정에 관한 연구)

  • 유원재;김도훈;안재웅;강영준;노형민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.199-202
    • /
    • 2002
  • Moire topography method is a well-known non-contacting 3-D measurement method. Recently, the automatic 3-D measurement by moire topography has been required since the method was frequently applied to the engineering and medical fields. 3-D measurement using digital projection moire topography is very attractive because of its high measuring speed and high sensitivity. In this paper, using different N-bucket algorithm method of digital projection moire topography is tested to measuring object with the 2$\pi$-ambiguity problem. Experimental results prove that the proposed scheme is capable of finding measurement errors that decreased more by using the flour-three step algorithm method than the same step in the phase shifting of different pitchs.

  • PDF

The Use of Advanced Optical Measurement Methods for the Mechanical Analysis of Shear Deficient Prestressed Concrete Members

  • Wilder, K. De;Roeck, G. De;Vandewalle, L.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.189-203
    • /
    • 2016
  • This paper investigates on the use of advanced optical measurement methods, i.e. 3D coordinate measurement machines (3D CMM) and stereo-vision digital image correlation (3D DIC), for the mechanical analysis of shear deficient prestressed concrete members. Firstly, the experimental program is elaborated. Secondly, the working principle, experimental setup and corresponding accuracy and precision of the considered optical measurement techniques are reported. A novel way to apply synthesised strain sensor patterns for DIC is introduced. Thirdly, the experimental results are reported and an analysis is made of the structural behaviour based on the gathered experimental data. Both techniques yielded useful and complete data in comparison to traditional mechanical measurement techniques and allowed for the assessment of the mechanical behaviour of the reported test specimens. The identified structural behaviour presented in this paper can be used to optimize design procedure for shear-critical structural concrete members.