• Title/Summary/Keyword: engineering material

Search Result 26,697, Processing Time 0.045 seconds

Development of teaching material of material mechanics and portable material testing machine for convergence education of mechanical engineering (기계공학의 융합교육을 위한 재료역학 교재 및 휴대용 재료시험기 개발)

  • Cho, Seunghyun;Lee, Soonah
    • Journal of Engineering Education Research
    • /
    • v.21 no.4
    • /
    • pp.20-27
    • /
    • 2018
  • In this paper, we conducted an analysis of existing materials of material mechanics, surveying educational demands, and selecting art fields for mechanical engineering in collaboration with experts in the fields of aesthetics and renaissance in order to develop educational materials conversed with humanities and arts. In addition, as a core education tool for convergence education, it was developed with an education kits that can be disassembled, assembled and carried by students. As a results of research, education materials were introduced various arts, linked to the engineering thinking. And measurement experiments of material characteristics were carried in a general classroom using developed education kits. From a paper results, the artistic sensitivity of the students will be enhanced and the students' creative problem solving ability will be improved as the ultimate goal of convergence education.

Reliable experimental data as a key factor for design of mechanical structures

  • Brnic, Josip;Krscanski, Sanjin;Brcic, Marino;Geng, Lin;Niu, Jitai;Ding, Biao
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.245-256
    • /
    • 2019
  • The experimentally determined mechanical behavior of the material under the prescribed service conditions is the basis of advanced engineering optimum design. To allow experimental data on the behavior of the material considered, uniaxial stress tests were made. The aforementioned tests have enabled the determination of mechanical properties of material at different temperatures, then, the material's resistance to creep at various temperatures and stress levels, and finally, insight into the uniaxial high cyclic fatigue of the material under different applied stresses for prescribed stress ratio. Based on fatigue tests, using modified staircase method, fatigue limit was determined. All these data contributes the reliability of the use of material in mechanical structures. Data representing mechanical properties are shown in the form of engineering stress-strain diagrams; creep behavior is displayed in the form of creep curves while fatigue of the material is presented in the form of S-N (maximum applied stress versus number of the cycles to failure) curve. Material under consideration was 18CrNi8 (1.5920) steel. Ultimate tensile strength and yield strength at room temperature and at temperature of $600^{\circ}C$: [${\sigma}_{m,20/600}=(613/156)MPa$; ${\sigma}_{0.2,20/600}=(458/141)MPa$], as well as endurance (fatigue) limit at room temperature and stress ratio of R = -1 : (${\sigma}_{f,20,R=-1}=285.1MPa$).

Construction of web-based material DB and comparison of material properties using 3D graph (웹기반 재료 DB 구축 및 3D 그래프를 사용한 물성비교)

  • Chun D.M.;Ahn S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.724-727
    • /
    • 2005
  • Material selection is one of the important activities in design and manufacturing. A selected material at the conceptual design stage affects material properties of the designed part as well as manufacturability and cost of the final product. Unfortunately there are not many accessible material databases that can be used for design. In this research, a web-based material database was constructed. In order to assist designers to compare different materials, two-dimensional and three-dimensional graphs were provided. Using these graphical tools, multi-dimensional comparison was available in more intuitive manner. To provide environmental safety of materials, the database included National Fire Protection Association publication Standard No.704. The web-based tool is available at http://fab.snu.ac.kr/matdb.

  • PDF