• 제목/요약/키워드: engineered cementitious composites

검색결과 42건 처리시간 0.022초

Behavior of short columns constructed using engineered cementitious composites under seismic loads

  • Syed Humayun Basha;Xiaoqin Lian;Wei Hou;Pandeng Zheng;ZiXiong Guo
    • Steel and Composite Structures
    • /
    • 제48권5호
    • /
    • pp.565-582
    • /
    • 2023
  • The present research reports the application of engineered cementitious composites (ECC) as an alternative to conventional concrete to improve the seismic behavior of short columns. Experimental and finite element investigation was conducted by testing five reinforced engineered cementitious composite (RECC) concrete columns (half-scale specimens) and one control reinforced concrete (RC) specimen for different shear-span and transverse reinforcement ratios under cyclic lateral loads. RECC specimens with higher shear-span and transverse reinforcement ratios demonstrated a significant effect on the column lateral load behavior by improving ductility (>5), energy dissipation capacity (1.2 to 4.1 times RC specimen), gradual strength degradation (ultimate drift >3.4%), and altering the failure mode. The self-confinement effect of ECC fibers maintained the integrity in the post-peak region and reserved the transmission of stress through fibers without noticeable degradation in strength. Finite element modeling of RECC specimens under monotonic incremental loads was carried out by adopting simplified constitutive material models. It was apprehended that the model simulated the global response (strength and stiffness) and damage crack patterns reasonably well.

Tailoring ECC for Special Attributes: A Review

  • Li, Victor C.
    • International Journal of Concrete Structures and Materials
    • /
    • 제6권3호
    • /
    • pp.135-144
    • /
    • 2012
  • This article reviews the tailoring of engineered cementitious composites (ECC), a type of high performance fiber reinforced cementitious composites with a theoretical design basis, for special attributes or functions. The design basis, a set of analytic tools built on micromechanics, provides guidelines for tailoring of fiber, matrix, and fiber/matrix interfaces to attain tensile ductility in ECC. If conditions for controlled multiple cracking are disturbed by the need to introduce ingredients to attain a special attribute or function, micromechanics then serve as a systematic and rational means to efficiently recover composite tensile ductility. Three examples of ECCs with attributes of lightweight, high early strength, and self-healing functions, are used to illustrate these tailoring concepts. The fundamental approach, however, is broadly applicable to a wide variety of ECCs designed for targeted fresh and/or hardened characteristics required for specific applications.

고인성 복합체로 보강한 조적부재의 휨 거동 평가 (Evaluation of Flexural Behavior of Masonry Members Reinforced with Engineered Cementitious Composite)

  • 양승현;김선웅;김재환;강석표;홍성욱
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권4호
    • /
    • pp.37-45
    • /
    • 2021
  • 논문은 조적부재에 고인성 복합체를 보강하여 내진보강 가능성을 평가하기 위한 기초연구이다. 고인성 복합체의 섬유 혼입률에 따른 성능을 검토하기 위하여 배합설계에 따라 시험체를 제조하고 유동성능, 압축강도, 휨 강도, 길이변화율 및 직접인장변형률을 측정하였다. 또한, 무보강 조적부재, 고인성 복합체로 보강한 조적부재, 고인성 복합체에 유리섬유 및 와이어 메쉬를 별도 보강한 조적부재를 제작하고 휨 강도와 최대변위를 측정하였다. 고인성 복합체를 보강한 모든 실험체들은 무보강과 비교하여 최대내력이 16배 이상의 효과가 나타났으며 균열 형상을 검토한 결과 에너지소산능력이 우수한 것으로 나타나 내진보강 가능성을 확인하였다.

Mechanical properties and assessment of a hybrid ultra-high-performance engineered cementitious composite using calcium carbonate whiskers and polyethylene fibers

  • Wu, Li-Shan;Yu, Zhi-Hui;Zhang, Cong;Bangi, Toshiyuki
    • Computers and Concrete
    • /
    • 제30권5호
    • /
    • pp.339-355
    • /
    • 2022
  • The high cost of ultra-high-performance engineered cementitious composite (UHP-ECC) is currently a crucial issue, especially in terms of the polyethylene (PE) fibers use. In this paper, cheap calcium carbonate whiskers (CW) were evaluated on the feasibility of hybrid with PE fibers. Diverse combinations of PE fibers and CW were employed to investigate the multi-scale enhancement on the UHP-ECC performance. A probabilistic-based UHP-ECC tensile strain reliability analysis approach was utilized, which was in general agreement with the experimental results. Furthermore, a multi-dimensional integrated representation was conducted for the comprehensive assessment of UHP-ECC. Results illustrated that CW improved the compressive strength and energy dissipation capacity of UHP-ECC owing to the microscopic strengthening mechanism. CW and PE fiber further promoted the saturated cracking of composite by multi-scale crack arresting effect. In particular, PE1.75-CW0.5 specimen possessed the best overall performance. The ultimate cracking width of PE1.75-CW0.5 group had 98 ㎛, which was 46.18% lower compared to PE2-CW0 group, the 28d compressive strength were slightly improved, the tensile strain capacity was comparable to that of PE2-CW0 group. The results above demonstrated that combinations of PE fiber and CW could significantly enhance the comprehensive performance of UHP-ECC, which was beneficial for large-scale engineering applications.

Pseudo-strain hardening and mechanical properties of green cementitious composites containing polypropylene fibers

  • Karimpour, Hossein;Mazloom, Moosa
    • Structural Engineering and Mechanics
    • /
    • 제81권5호
    • /
    • pp.575-589
    • /
    • 2022
  • In order to enhance the greenness in the strain-hardening composites and to reduce the high cost of typical polyvinyl alcohol fiber reinforced engineered cementitious composite (PVA-ECC), an affordable strain-hardening composite with green binder content has been proposed. For optimizing the strain-hardening behavior of cementitious composites, this paper investigates the effects of polypropylene fibers on the first cracking strength, fracture properties, and micromechanical parameters of cementitious composites. For this purpose, digital image correlation (DIC) technique was utilized to monitor crack propagation. In addition, to have an in-depth understanding of fiber/matrix interaction, scanning electron microscope (SEM) analysis was used. To understand the effect of fibers on the strain hardening behavior of cementitious composites, ten mixes were designed with the variables of fiber length and volume. To investigate the micromechanical parameters from fracture tests on notched beam specimens, a novel technique has been suggested. In this regard, mechanical and fracture tests were carried out, and the results have been discussed utilizing both fracture and micromechanical concepts. This study shows that the fiber length and volume have optimal values; therefore, using fibers without considering the optimal values has negative effects on the strain-hardening behavior of cementitious composites.

시멘트계 모르타르 매트릭스를 활용한 섬유복합재료 ECC(Engineered Cementitious Composite)의 설계와 시공 성능 (Design and Constructibility of an Engineered Cementitious Composite Produced with Cement-based Mortar Matrix and Synthetic Fibers)

  • 김윤용
    • Composites Research
    • /
    • 제20권2호
    • /
    • pp.21-26
    • /
    • 2007
  • 이 논문은 합성섬유를 이용하여 포틀랜드 시멘트 모르타르를 보강한 복합재료인 ECC(Engineered Cementitious Composite)의 설계 과정과 건설현장에 이 복합재료를 적용할 수 있도록 시공성을 부여한 연구 내용을 정리하였다. 이 연구에서는 다양한 시공성, 즉 자기충전(self·consolidating)과 스프레이 시공성을 갖는 ECC를 제작하기 위하여 단계적인 재료 개발 방법론을 채택하였다. 우선 마이크로역학(micromechanics)과 안정상태균열이론(steady-state cracking theory)을 이용하여 골재와 섬유를 선정한 후, 굳기 전 재료의 레올로지를 제어하는 방법으로 시공성을 구현하였다. 여기서, 굳기 전 재료의 레올로지를 제어하기 위하여 화학첨가제(chemical admixtures)와 광물첨가재(mineral admixtures)의 양을 소량으로 조절하는 방법을 사용하였다. 이러한 방법을 활용함으로써 굳기 전에는 다양한 시공성을 나타내면서, 굳은 후에는 높은 연성(인장변형경화 거동)을 나타내는 실용적인 ECC 복합재료를 개발하였다.

ECC 영구거푸집의 내화성능 및 역학적 특성에 관한 실험적 연구 (An Experimental Study on the Fire Resistance and Mechanical Properties of ECC Permanent Form)

  • 김용로;송영찬;오재근;김재환;김욱종;이도범
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2009년도 춘계 학술논문 발표대회 산업계
    • /
    • pp.75-78
    • /
    • 2009
  • It was investigated fire resistance properties and mechanical properties of high strength concrete column using ECC(Engineered Cementitious Composites) permanent form by KS F 2257 Methods of fire resistance test for elements of building construction and compression test for application of precast concrete column method of high rise building in this study. As a test result, it was appeared that ECC permanent form is available as fire resistance method of high strength concrete and new precast concrete construction method for facilitating construction of high rise building.

  • PDF

Repair Performance of Engineered Cementitious Composites(ECC) Treated with Wet-Mix Spraying Process

  • Kim, Yun-Yong
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권3E호
    • /
    • pp.207-211
    • /
    • 2006
  • This paper presents an experimental study on the repair performance of sprayed engineered cementitious composites(ECC) serving as a repair material. Sprayable ECC, which exhibit tensile strain-hardening behavior in the hardened state and maintain sprayable properties in the fresh state, have been developed by using a parallel control of micromechanical design and rheological process design. The effectiveness of sprayable ECC in providing durable repaired structures was assessed by spraying the ECC and testing them for the assessment. The experimental results revealed that, when sprayed ECC were used as a repair material, both load carrying capacity and ductility represented by the deformation capacity at peak load of the repaired flexural beams were obviously increased compared to those of commercial prepackaged mortar(PM) repaired beams. The significant enhancement in the energy absorption capacity and tight crack width control of the ECC repair system treated with wet-mix spraying process suggests that sprayed ECC can be effective in extending the service life of rehabilitated infrastructures.

Seismic fragility analysis of corroded RC pier strengthened by engineered cementitious composites

  • Yan Liang;Jing-Xiao Shu;Cheng-Xin Zhao;Xi Dong Wang;Guang Yu Yang
    • Earthquakes and Structures
    • /
    • 제26권4호
    • /
    • pp.269-283
    • /
    • 2024
  • When a reinforced concrete (RC) structure is exposed to a corrosive environment for an extended period of time, the material qualities deteriorate, resulting in a loss in seismic performance. Engineered Cementitious Composites (ECC) have been used to reinforce the corroded RC structure, which can achieve reinforcement effectiveness for a small change in cross-section size. In this work, finite element models of unjacketed RC pier and ECC jacketed pier were established and verified by experimental tests, with the buckling effect of longitudinal reinforcement considered. Compared with the unjacketed pier, the displacement of the pier top of the ECC jacketed pier was reduced by about 9.52% under earthquake action. In the case of moderate and major earthquakes, the probability of exceedance of ECC jacketed pier is significantly reduced. For the case of rare earthquake loading, with the ECC jacket, the e of the pier experiencing serious damage and complete damage states is reduced by 10.29% and 29.78%, respectively.

섬유 보강 시멘트계 복합재료의 단면 이미지에서 섬유 검출을 위한 섬유 형광 특성 분석 (Fluorescence Characteristic Analysis for Fiber Detection in Sectional Image of Fiber Reinforced Cementitious Composite)

  • 이방연;박준형;김윤용
    • Composites Research
    • /
    • 제23권3호
    • /
    • pp.50-57
    • /
    • 2010
  • 섬유 보강 시멘트계 복합재료의 성능 예측 및 평가에 있어서 중요한 영향을 미치는 섬유 분포 특성을 정량적으로 평가하기 위해서는 복합재료의 단면 이미지에서 섬유를 정확히 검출하여야 한다. 이 논문은 형광원리를 이용하여 합성섬유를 매트릭스로부터 개별적으로 검출하기 위한 기초 연구로써 섬유 보강 시멘트계 복합재료 중의 하나인 ECC에 일반적으로 사용되는 PVA 섬유, PET 섬유, PE 섬유, 그리고 PP 섬유의 형광특성을 분석하였다. 또한 하이브리드 된 경우 합성섬유들 간의 상대 형광 광도값의 차이를 비교하여 종류별로 구분하기 위한 최적의 파장대를 선정하였으며, 그 파장대에서 두 분류대상을 구별할 수 있는 최적의 경계값을 통계적 방법을 이용하여 산출하였다. 또한 형광 현미경을 이용하여 각 섬유를 촬영하여 상대적인 밝기값을 비교하였다.