• Title/Summary/Keyword: engine vibration

Search Result 946, Processing Time 0.025 seconds

Two Stroke Low Speed Diesel Engine Crankshaft Crack Phenomenon Study by Torsional Vibration Calculation & Measurement (비틀림 진동 계산 및 측정을 통해 고찰한 선박용 2행정 저속엔진 Crankshaft 파단 현상)

  • Moon, Joung-Ha;Kim, Jeong-Ryul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.110-118
    • /
    • 2014
  • In the past two stroke low speed diesel engine were widely used for marine propulsion. these engine have many merit for example, higher thermal efficiency and durability. however, shaft vibration problem was continuously rise up due to large power of two stroke low speed diesel engine. specially, the initial stage engine revolution counter & stress has acculated. For that reason, sometimes occurred crankshaft crack accident. In this study, regarding the initial stage engine, trying to analyze what is cause the crack phenomenon using by latest torsional vibration calculation program & measurement equipment.

  • PDF

Control of Active Engine Mount System Featuring MR Fluid and Piezostack via HILS (MR 유체와 압전스택을 이용한 능동 엔진마운트 시스템의 HILS 제어)

  • Lee, Dong-Young;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.351-356
    • /
    • 2009
  • This paper presents vibration control performance of active engine mount system installed with the magneto-rheological (MR) mount and the piezostack mount. The performance is evaluated via hardware-in-the-loop-simulation(HILS) method. As a first step, six degrees-of freedom dynamic model of an in-line four-cylinder engine which has three points mounting system is derived by considering the dynamic behaviors of MR mount and piezostack mount. As a second step, sliding mode controller(SMC) is synthesized to actively control the imposed vibration In order to demonstrate the effectiveness of the proposed active engine mount, vibration control performances are evaluated under various engine operating speeds (wide frequency range) using HILS method and presented in time and frequency domain.

  • PDF

Control of Active Engine Mount System Featuring MR Fluid and Piezostack via HILS (MR 유체와 압전스택을 이용한 능동 엔진마운트 시스템의 HILS 제어)

  • Lee, Dong-Young;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.2
    • /
    • pp.122-128
    • /
    • 2010
  • This paper presents vibration control performance of active engine mount system installed with the magneto-rheological(MR) mount and the piezostack mount. The performance is evaluated via hardware-in-the-loop-simulation(HILS) method. As a first step, six degrees-of freedom dynamic model of an in-line four-cylinder engine which has three point mounting system is derived by considering the dynamic behaviors of MR mount and piezostack mount. As a second step, sliding mode controller(SMC) is synthesized to actively control the imposed vibration. In order to demonstrate the effectiveness of the proposed active engine mount, vibration control performances are evaluated under various engine operating speeds(wide frequency range) using HILS method and presented in time and frequency domain.

Acoustic Enclosure Design of Diesel Engine (디젤엔진의 음향차폐장치 설계)

  • Choi, Hyun;Kim, Young-Chan;Kim, Doo-Hoon;Jeon, Jae-jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.481-487
    • /
    • 1997
  • The development of transportation and construction equipment has required higher engine power and lower operation cost. The sound which the engine emits often degrade the performance of the whole system which adopts that engine. Specially the marine engine requires high restriction on the noise level for the customer's comfort and safety. The noise and vibration of Diesel engine must be carefully considered in the early design step. The double antivibration system is effective to increase the efficiency of antivibration, and the acoustic enclosure for reducing the noise level. 2 DOF model was effective to estimate the antivibration performance, which allows to determine the mass of the engine bed and the specification of the engine mount. The mass distribution of the enclosure system can be considered effectively by using the FEM model. The design contains structurally rigid engine bed by FEM, which is for reducing the influence of the flexible vibration, rubber mount selection as well as the acoustic enclosure design.

  • PDF

Structural Vibration Analysis of a Large Two-Stroke Engine and Foundation System for Stationary Power Plants (발전용 대형 2 행정 디젤 엔진 및 기초의 구조 진동해석)

  • 박종포;신언탁
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.493-499
    • /
    • 2000
  • Structural vibration analysis of the stationary power plant system employing a large two-stroke low speed diesel engine is performed to verify that the vibration characteristics of the system meet design requirements, The system consists of the diesel engine generator and concrete foundation including pile and soil. The system is modeled in the form of a mass-elastic system of 5 degrees of freedom for vibration analysis. Excitation moments and dynamic parameters including engine body stiffness soil stiffness and damping are identified for the analysis, Results of structural vibration analysis of the system are presented and compared with measurements in this paper.

  • PDF

Transverse vibration reduction at navigation bridge deck of the shuttle tanker using structural intensity analysis (진동 인텐시티 해석을 통한 원유운반선의 거주구 횡방향 진동 저감 연구)

  • Kim, Ki-Sun;Kim, Heui-Won;Joo, Won-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.251-255
    • /
    • 2012
  • Structural intensity has been mainly utilized to identify vibration energy flow in a vessel. In this paper, the structural intensity of a shuttle tanker subjected to H-moment of the main engine was calculated using a finite element model. From the analysis, it was found that the top-bracing elements, which support the main engine onto the hull structure to prevent the excessive transverse vibration of the main engine, play the role of the dominant path and sink for vibration energy flow from the main engine. Therefore, the structural intensity was controlled by the modification of stiffness and damping characteristics of the top-bracing elements. As a result, it is observed that the transverse vibration level at the center of navigation bridge deck decreased after the control of structural intensity.

  • PDF

Defect Detection and Defect Classification System for Ship Engine using Multi-Channel Vibration Sensor (다채널 진동 센서를 이용한 선박 엔진의 진동 감지 및 고장 분류 시스템)

  • Lee, Yang-Min;Lee, Kwang-Young;Bae, Seung-Hyun;Jang, Hwi;Lee, Jae-Kee
    • The KIPS Transactions:PartA
    • /
    • v.17A no.2
    • /
    • pp.81-92
    • /
    • 2010
  • There has been some research in the equipment defect detection based on vibration information. Most research of them is based on vibration monitoring to determine the equipment defect or not. In this paper, we introduce more accurate system for engine defect detection based on vibration information and we focus on detection of engine defect for boat and system control. First, it uses the duplicated-checking method for vibration information to determine the engine defect or not. If there is a defect happened, we use the method using error part of vibration information basis with error range to determine which kind of error is happened. On the other hand, we use the engine trend analysis and standard of safety engine to implement the vibration information database. Our simulation results show that the probability of engine defect determination is 100% and the probability of engine defect classification and detection is 96%.

Development of Engine Vibration Analysis and Monitoring System(EVAMOS) for Marine Vessels (선박용 엔진 진동 분석 및 모니터링 시스템(EVAMOS) 개발에 관하여)

  • Lee, D.C.;Joo, K.S.;Nam, T.K.;Kim, E.S.;Kim, S.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.2
    • /
    • pp.155-161
    • /
    • 2009
  • Engine builders have separately developed and applied torsional, axial and structural vibration monitoring system on most marine engines. These systems displayed their results for engine or ship operation engineers and were not regularly stored at the hardware of computer. So, the history and trend of various engine and hull vibrations were not supported for preventive maintenance and to protect the failure of these activity or function. The integrated vibration or stress monitoring system(EVAMOS : engine vibration analysis and monitoring system) in marine diesel engine, its accessories and hull structure have been developed by the dynamics laboratory of Mokpo Maritime University during last 3 years. This paper introduces the design conception and ability of commercial software EVAMOS with field data on several actual tests.

Research of Vibration Criteria of Diesel Engines in Naval Craft (함정 디젤엔진 진동규격 연구)

  • Lee, Kyoung-Hyun;Han, Hyung-Suk;Park, Mi-You;Cho, Heung-Gi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.797-802
    • /
    • 2011
  • Vibration of diesel engines in naval vessels causes structure vibration which is significant under water radiating noise source under CIS (Cavitation Inception Speed). So managing the vibration level of diesel engine is important for survivability and also durability of naval vessels. Therefore, in this research, a vibration criterion which is applied for Korean naval vessels are reviewed. It is compared with the DNV, ABS and merchant ship's diesel engine criteria. And also vibration data of three Korean naval vessels are analyzed. As a result, reasonable criteria of diesel engine vibration and shipbuilding standards are suggested.

  • PDF

Vibration Analysis of In-line Three Cylinder Engine with Balance Shaft Using DADS (DADS를 이용한 밸런스 샤프트 장착 직렬 3기통 엔진의 진동 해석)

  • 서권희;민한기;천인범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.148-156
    • /
    • 2000
  • For the in-line three cylinder engine whose crankshaft has a phase of 120 degrees, the total sum of unbalanced inertia forces occurring in each cylinder will be counterbalanced among three cylinders. However, parts of inertia forces generated at the No.1 and No.3 cylinders will cause a primary moment about the No.2 cylinder. In order to eliminate this out-of-balance moment, a single balance shaft has been attached to the cylinder block so that the engine durability and riding comfort may be further improved. Accordingly, the forced vibration analysis of the in-line three cylinder engine must be implemented to meet the required targets at an early design stage. In this paper, a method to reduce noise and vibration in the 800cc, in-line three cylinder LPG engine is suggested using the multibody dynamic simulation. The static and dynamic balances of the in-line three cylinder engine are investigated analytically. The multibody dynamic model of the in-line three cylinder engine is developed where the inertia properties of connecting rod, crankshaft, and balance shaft are extracted from their FE-models. The combustion pressure within the No.1 cylinder in three significant operating conditions(1500rpm-full load, 4000rpm-full load and 7000rpm-no load)is measured from the actual tests to excite the engine. The vibration velocities at three engine mounts with and without balance shaft are evaluated through the forced vibration analysis. Obviously, it is shown that the vibration of the in-line three cylinder engine with balance shaft is reduced to the acceptable level .

  • PDF