• Title/Summary/Keyword: engine lubrication system

Search Result 91, Processing Time 0.022 seconds

Development of High Performance Micro Turbojet Engine (고성능 초소형 터보제트엔진 개발)

  • Paeng, Ki-Seok;Ahn, Chul-Ju;Min, Seong-Ki;Kim, Yu-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.548-551
    • /
    • 2010
  • A 150 lbf-thrust class micro turbojet engine has been developed. The engine could be applied to power plant for small aviation vehicle such as UAV, decoy and anti-radar missile and was designed with concepts that has small size, low-cost and high performance. A prototype was manufactured and performed the ground static test and high altitude test. This paper outlines the features and layout of 150 lbf turbojet engine and also describes the design characteristics and test results of the engine and components.

  • PDF

An Experimental Study on Characteristics of Engine Oil Diluted by a Bio-Alcohol Mixture Fuel (바이오알코올 혼합연료의 엔진오일 희석특성에 대한 실험적 연구)

  • Kim, HyunJun;Lee, HoKil;Oh, SeDoo;Kim, Shin
    • Tribology and Lubricants
    • /
    • v.32 no.6
    • /
    • pp.183-188
    • /
    • 2016
  • Engine oil plays an important role in the mechanical lubrication and cooling of a vehicle engine. Recently, engine development has focused on the adoption of gasoline direct injection (GDI) and turbocharging methodology to achieve high-power and high-speed performance. However, oil dilution is a problem for GDI engines. Oil dilution occurs owing to high-pressure fuel injection into the combustion chamber when the engine is cold. The chemical components of engine oil are currently developed to accommodate gasoline fuel; however, bio-alcohol mixtures have become a recent trend in fuel development. Bio-alcohol fuels are alternatives to fossil fuels that can reduce vehicle emissions levels and greenhouse gas pollution. Therefore, the chemical components of engine oil should be improved to accommodate bio-alcohol fuels. This study employs a 2.0 L turbo-gas direct injection (T-GDI) engine in an experiment that dilutes oil with fuel. The experiment utilizes a variety of fuels, including sub-octane gasoline fuel (E0) and a bio-alcohol fuel mixture (Ethanol E3~E7). The results show that the lowest amount of oil dilution occurs when using E3 fuel. Analyzing the diluted engine oil by measuring density and moisture with respect to kinematic viscosity shows that the lowest values of these parameters occur when testing E3 fuel. The reason is confirmed to influence the vapor pressure of the low concentration bio-alcohol-fuel mixture.

A Study on Design of Crankshaft Bearing System (크랭크샤프트 베어링시스템 설계 연구)

  • Yun Jeong-Eui
    • Tribology and Lubricants
    • /
    • v.22 no.4
    • /
    • pp.203-210
    • /
    • 2006
  • Two kinds of crankshaft oil supply system which were called continuous and discontinuous oil sup-ply system have recently been adopted in engine developing process. In order to clarify the lubrication characteristics for theses systems, in this paper, the comparison studies on supplied oil temperature, pressure, aspect ratio of bearings, and radial clearance were carried out for the main and the connecting rod bearing using computational fluid dynamic analysis.

Analysis of Journal Locus in a Connecting Rod Bearing (엔진 연결봉 베어링의 운동 궤적 해석)

  • 조명래;정진영;한동철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.183-189
    • /
    • 1997
  • This paper presents the motion of dynamically loaded journal in the connecting rod bearing of reciprocating internal combustion engine. Journal motions in engine bearings have been composed of two components, which was rotational and translational motion. Early study of journal locus in engine bearing had been performed on each motion. This paper has been considered two motions simultaneously. Reynolds equation including the squeeze effect has been analyzed using the ADI method, and real engine bearing and crankshaft system has been considered to calculate the cyclic external force. The equations of journal motion have been derived and then the numerical integration of these equations performed by 4th order Runge-Kutta method. This paper gives various journal orbits in connecting rod bearing depending on cyclic external forces, rotating speeds, and bearing parameters.

  • PDF

A Study on the Identification Method of Lubrication Characteristics for Journal Bearing (저널베어링의 윤활상태 판별 기법에 관한 연구)

  • Kim, Myung-Hwan;Lee, Sang-Don;Cho, Yong-Joo
    • Tribology and Lubricants
    • /
    • v.25 no.1
    • /
    • pp.56-60
    • /
    • 2009
  • A journal bearing is used in a hydrodynamic lubrication state, but it becomes a boundary lubrication state that asperity of a contact part touch each other when pressure is too high and an enough oil film is not formed by viscosity change due to lubricating oil temperature. At this time, abrasion due to contact between a journal and a bearing is unavoidable, and scuffing damage that the journal adheres to the bearing occurs if the process is repeated. Damage of the journal bearing is an important problem because it gives huge damage to a machine and can generate large accidents such as economic loss and human life damage. In this study, method for using the pull-up resistor concept was introduced as the monitoring technology. This monitoring system is important to enhance reliability of the engine.

The Development of the Turbo-Generator System with direct driving High Speed Generator. (고속 발전기 직접 구동 방식의 터보 제너레이터 시스템 개발)

  • 노민식;권정혁;변지섭
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2769-2772
    • /
    • 2003
  • This paper presents results of the development of the Turbo-generator system with structure which is HSG(High Speed Generator) installed to high speed gas-turbine engine directly. Turbo-generator with high speed motor-generator directly has many advantages aspects of weight, size, lubrication system and complexity of the system compared of conventional turbo-generator system with gear-box. But because of direct high speed operation of the high speed generator, we have to need stable high speed motor driving algorithm for perfect engine ignition when gas turbine starting. Also we have to need design of the PCU(Power Conditioning Unit) for converting high speed AC output power to conventional AC power or needed DC power.

  • PDF

A Study on the Performance Characteristics of Low Pressure Hydraulic Circuit of Common Rail System (커먼레일 시스템용 저압 유압회로의 성능특성에 관한 연구)

  • Lee, Choon-Tae
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.51-57
    • /
    • 2014
  • High pressure common rail injection technology has revolutionized the diesel industry. Over the last decade it has allowed engine builders to run higher injection pressures as much as above 1,300bar in order to increase engine efficiency, while reducing emissions. This common rail system has low pressure circuit which is consist of low pressure pump, cascade overflow valve and flow metering unit. The low pressure pump's purpose is to feed fuel oil to the high pressure pump. The cascade overflow valve keeps pressure in front of the metering unit constant and provides lubrication for the high pressure pump. The metering unit, known as the MPROP or fuel pressure regulator, regulates the maximum flow rate delivers to the rail. In this paper, we have investigated the performance characteristics of each components and total low pressure circuit of common rail system.

Comparative Study of the Quality of Automotive Engine Oils Being Marketed (국내 윤활관리 현황분석 및 품질 비교평가)

  • 정충섭;김명희;이현기;강경선;김월중;장영식;심규성
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.359-365
    • /
    • 1999
  • We have evaluated the performance and some physical properties of 25 automotive engine oils (21 domestic and 5 imported products) which are purchased on the market to verify the API(American Petroleum Institute) or ILSAC(International Lubricant Standardization and Approval Committee) certification marks attached on the products and to determine the necessity of the quality control of the engine oils on the market. 12 test items are chosen according to API engine oil specification, which are flash point, pour point, cold cranking simulator apparent viscosity, pumping viscosity, gelation index, HTHS(High Temperature High Shear viscosity), foam, high temperature foam, filterability, volatility, high temperature deposit(TEOST), phosphorus content. We have found one product which did not meet the API specification on gelation index, one on HTHS, four on foam, and one on volatility, which implies that the quality control system is in need to check the fidelity of the certification marks attached on the engine oils being marketed. In addition, this works raises the necessity of the upgrade of the present Korean engine oil specification.

  • PDF

An Experimental Study on Improved Fuel Economy and Lower Exhaust Emissions of New Automotive Engine adopting Split Cooling System

  • Oh, C.S.;Lee, J.H.;Shin, S.Y.;Kim, W.T.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.407-408
    • /
    • 2002
  • This paper presents a split cooling system for a new inline 4-cylinder automotive engine. The split cooling system circulates coolant to the cylinder head and cylinder block separately. The coolant flow in the cylinder block is controlled by a $2^{nd}$ Thermostat installed at the outlet of cylinder block. The $2^{nd}$ thermostat closes when the coolant temperature is low. And this makes the coolant flow in cylinder block nearly stagnant, thereby reducing the coolant-side heat transfer coefficient and raising cylinder bore temperature. The $2^{nd}$ thermostat starts to open when the coolant temperature reaches a specified temperature. The test results on engine dynamometer show improved fuel economy and lower exhaust emission which result from the decrease in friction works and cooling loss. Also, several vehicle tests, with application of the new engine have been performed. Fuel economy improvement of 0.5{\sim}2.0%$ yields from different test modes and details are discussed in this paper.

  • PDF

Seizure Failure of Engine Crankshaft Bearings

  • Ni, X.;Cheng, H.S.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.162-171
    • /
    • 1995
  • The application of reciprocating engine crankshaft bearings is of particular importance and interest among the plain bearing, not only because the sheer volume of intemal combustion engines now produced, but because the severe operating conditions they are subjected to. Demands for better performances of crankshaft bearings have provide an important impetus in the development of bearings and bearing materials. As engine design progresses toward higher outpt and higher efficiency, crankshaft bearings must perform under more seveve operating conditions. Higher load, temperature, and speed as well as lower viscosity oil are applied to the bearing sysem, resulting in a smaller minimum oil film thickness. This means more solid-solid contact between the shaft and bearing, and the bearing is exposed to more danger of seizure. Some engines may experience bearing seizure problems. However, understanding about the seizure behavior and mechanism is far from being enough. Seizure resistance of a bearing-shaft system will be affected by the properties of the shaft and bearing, especially their materials and surface texture. Commonly used engine bearing materials include Al-Pb-Si, Al-Sn-Si, Al-Sn, and Cu-Pb with Pb-Sn-Cu overlay. These materials have very different properties. They showed different behaviors dering seizure tests and seizure may occur with different mechanism for different bearing material. Shaft materials also affect the seizure resistance of the system. Surface texture of the bearing and shaft have apparent effects on the lubrication and solid-solid contact pattern, and therefore will affect the seizure behavior of the system. Bearings and shafts which are made of different materials and have different surface textures have been tested and analyzed. Their effects on seizure resistance are discussed and possible seizure mechanisms for different beatings are presented in this paper.