• Title/Summary/Keyword: engine lubrication system

Search Result 91, Processing Time 0.017 seconds

Evaluation of Engine Lubrication System for Adapting Variable Cam Timing System (VCT탑재를 위한 엔진윤활시스템 평가)

  • Yun Jeong-Eui
    • Tribology and Lubricants
    • /
    • v.22 no.1
    • /
    • pp.14-19
    • /
    • 2006
  • VCT(Variable Cam Timing) system is one of very useful engine components to improve fuel economy and overcome emission regulation etc. In order to adapt the VCT to a base engine, many design mod ifications in the mechanical and lubrication fields are required. Especially, because the VCT performance itself depends on supplied oil flow rate and pressure, it is very important to evaluate the engine lubrication system in a viewpoint of supplied oil flow rate and pressure. In this paper, unsteady transient flow network analysis on the engine oil circuit system was carried out to do this.

A Study on the Engine Lubrication System Analysis Adapting Discontinuous Oil Supply Crankshaft System (불연속 오일공급 크랭크샤프트 시스템을 채택한 엔진 윤활시스템의 해석)

  • 윤정의
    • Tribology and Lubricants
    • /
    • v.20 no.1
    • /
    • pp.27-32
    • /
    • 2004
  • This paper presents unsteady oil flow behaviors in the engine lubrication network to clarify the differences between continuous and discontinuous oil supply crankshaft system. Using commercial network analysis program, Flowmaster2, engine lubrication network system analysis were carried out. And effects of crankshaft speed and supplied oil pressure on pressure fluctuation in oil groove and oil flow rate to each bearing were analyzed.

A Study on the Correlation of Oil Drain and Engine Tilting Angle (오일 드레인과 엔진경사각도간의 상관관계)

  • Kim, Dae-Yeol;Park, Pyong-Wan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.51-57
    • /
    • 2011
  • Parametric studies based on analysis of lubrication system of a four cylinder gasoline engine are illustrated system in this paper. In development process of engine lubrication system, parts of failure cases are related with oil pull over and oil churning phenomenon. The crankcase & head system pressure by oil churning phenomenon are gradual increased. It cause oil pull over phenomenon at engine breather line and oil over-consumption. In order to improve oil reduction and oil pull over phenomenon are also considered in the developing state. For this study, the characteristics of engine lubrication system are measured at various tilting angle and drain hole sizes. In addition, the oil flow & oil quantity are tested by blow by meter and catch jar. Results are presented to stabilize the oil supply system at sever driving condition. The data from present study are available for the engine lubrication system.

Numerical Prediction of Flow and Heat Transfer on Lubricant Supplying and Scavenging Flow Path of An Aero-engine Lubrication System

  • Liu, Zhenxia;Huang, Shengqin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.22-24
    • /
    • 2008
  • This paper presents a numerical model of internal flows in a lubricant supplying and scavenging flow path of an aero-engine lubrication system. The numerical model was built in the General Analysis Software of Aero-engine Lubrication System, GASLS, developed by Northwestern Polytechnical University. The lubricant flow flux, pressure and temperature distribution at steady state were calculated. GASLS is a general purpose computer program employed a 1-D steady state network algorithm for analyzing flowrates, pressures and temperatures in a complex flow network. All kinds of aero-engine lubrication systems can be divided into finite correlative typical elements and nodes from which the calculation network be developed in GASLS. Special emphasis is on how to use combined elements which is a type of typical elements to replace some complex components like bearing bores, accessory gearboxes or heat exchangers. This method can reduce network complexity and improve calculation efficiency. Final computational results show good agreement with experimental data.

  • PDF

Aeration Efface on the Oil Supply System of Engine Crankshaft Bearing (Aeration이 엔진 크랭크샤프트 베어링 오일공급 시스템에 미치는 영향)

  • 윤정의
    • Tribology and Lubricants
    • /
    • v.20 no.3
    • /
    • pp.119-124
    • /
    • 2004
  • Engine bearing system is generally affected by aeration. In this paper, the aeration effects on the engine crankshaft bearing system were studied. To do this, unsteady oil flow analysis on the engine crankshaft oil circuit system was carried out. And aeration effects on the bearing system were simulated to figure out lubrication characteristics of the each bearing such as oil flow rate, minimum oil film thickness, friction loss and increase of oil temperature.

A Study on the Friction Force Onaracteristics of Valve Train System in Gasoline Engine (가솔린기관의 밸브트레인 마찰특성)

  • 윤정의;이만희;김재석
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.30-37
    • /
    • 1998
  • It is well known that reduction of friction loss due to the valve train system greatly affects on improvement of fuel economy in internal combustion engine. In order to investigate friction characteristics of valve train system we carried out friction force measurement using test rig developed by ourselves. From test results, we concluded that characteristics of lubrication and friction torque on the valve train system such as mixed and hydrodynamic was mainly governed the contact type between cam and tappet.

  • PDF

A Study on the Engine Friction & Lubrication Characteristics related with Oil Aeration (오일 Aeration에 따른 엔진의 마찰 및 윤활 특성에 대한 연구)

  • 김영직;이창희;윤정의
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.184-189
    • /
    • 1999
  • This Paper presents the friction and lubrication charateristic related with oil aeration. It is well known that oil aeration occurs severe problem on lubrication system, in particular, in the engine bearings and hydraulic lash adjuster. In this study, engine tests were carried out in motoring conditions. In order to investigate oil aeration characteristics, we measured oil aeration with respect to oil temperature, oil viscosity, modified oil drain system. From the results, we concluded that aeration can be reduced by improving oil drain system and FMEP can be reduced by minimising of aeration.

  • PDF

Simulation of the Initial Wear and Lubrication Performance of Marine Engine Components (선박엔진 부품의 성능 향상을 위한 초기 마모 및 윤활 해석 연구)

  • Cha, Su-Bin;Lee, Hyang;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.38 no.6
    • /
    • pp.227-234
    • /
    • 2022
  • Recently, the demand for improving energy efficiency has rapidly increased because of the growing concerns over environmental issues. In this work, the tribo-test and simulation for the initial wear and lubrication performance were performed for the piston pin in the small end system of the connecting rod of a marine engine, to obtain useful data for improving the efficiency of marine engine systems. In addition, a diamond-like carbon (DLC) coating was applied to the piston pin to explore feasibility of eliminating the bush used in the system. The initial wear and lubrication characteristics between the uncoated piston pin and bush were compared with that between the DLC-coated piston pin and connecting rod in the tribo-test. The simulation for the wear and lubrication performance according to the wear progression was conducted based on the data obtained from the test. The wear characteristics were quantitatively assessed by the wear depth and wear volume, and the lubrication performance was characterized with the change of pressure and minimum oil film thickness with respect to the crank angle. It was found that the DLC-coated piston pin may provide better initial wear characteristics and lubrication performance. The results of this work may provide fundamental information for marine engines with improved efficiency.

The Effect of Engine Tilting Conditions on the Oil Supply System (엔진 경사 조건이 오일 공급 시스템에 미치는 영향)

  • 전문수;김숭기;박병완
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.37-43
    • /
    • 2004
  • Engine lubrication system is generally affected by vehicle driving conditions; acceleration, braking deceleration, and cornering. The oil supply system such as oil pan, baffle plate, and oil pick-up pipe should be optimized to cope with severe driving conditions. The main purpose of this paper is to understand the effect of the engine tilting angle on the oil supply system using engine tilting test rig. For the purpose, the oil pressure fluctuation and oil aeration in the main gallery are measured at various engine tilting angles. In addition, the oil flow is visualized by using transparent oil pan to investigate the cause of the formation of oil aeration. The test results show there is a strong correlation between the main gallery oil pressure fluctuation and oil aeration. It is also found that the visualization technique is helpful to stabilize the oil supply system at severe driving conditions.

The Frictional Modes of Piston Rings for an SI Engine (SI 엔진 피스톤-링의 마찰모드)

  • 조성우;최상민;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.114-120
    • /
    • 2000
  • Friction forces of piston rings for a typical SI engine were independently measured while excluding the effects of cylinder pressure, oil starvation and piston secondary motion using a floating liner system. Friction patterns, represented by the measured friction forces, were classified into five frictional modes with regard to the combination of predominant lubrication regimes(boundary, mixed and hydrodynamic lubrication) and stroke regions(mid-stroke and dead centers). The modes were identified on the Stribeck diagram of the dimensionless bearing parameter and friction coefficients which were evaluated at the mid-stroke and at the dead centers. And the frictional modes were estimated to the full operation range. The compression rings behave in the mode where hydrodynamic lubrication is dominant at the mid-stroke and mixed lubrication is dominant at the dead centers under steady operating conditions. However, the oil control ring behave in the mode where mixed lubrication is dominant throughout the entire stroke.

  • PDF