• Title/Summary/Keyword: energy-based design

Search Result 3,555, Processing Time 0.028 seconds

Evaluation of seismic energy demand and its application on design of buckling-restrained braced frames

  • Choi, Hyunhoon;Kim, Jinkoo
    • Structural Engineering and Mechanics
    • /
    • v.31 no.1
    • /
    • pp.93-112
    • /
    • 2009
  • In this study seismic analyses of steel structures were carried out to examine the effect of ground motion characteristics and structural properties on energy demands using 100 earthquake ground motions recorded in different soil conditions, and the results were compared with those of previous works. Analysis results show that ductility ratios and the site conditions have significant influence on input energy. The ratio of hysteretic to input energy is considerably influenced by the ductility ratio and the strong motion duration. It is also observed that as the predominant periods of the input energy spectra are significantly larger than those of acceleration response spectra used in the strength design, the strength demand on a structure designed based on energy should be checked especially in short period structures. For that reason framed structures with buckling-restrained-braces (BRBs) were designed in such a way that all the input energy was dissipated by the hysteretic energy of the BRBs, and the results were compared with those designed by conventional strength-based design procedure.

Analysis and simulation of multi-mode piezoelectric energy harvesters

  • Zhang, Ying;Zhu, Binghu
    • Smart Structures and Systems
    • /
    • v.9 no.6
    • /
    • pp.549-563
    • /
    • 2012
  • Theoretical analysis is performed on a multi-mode energy harvester design with focus on the first two vibration modes. Based on the analysis, a modification is proposed for designing a novel adaptive multi-mode energy harvester. The device comprises a simply supported beam with distributed mass and piezoelectric elements, and an adaptive damper that provides a 180 degree phase shift for the motions of two supports only at the second vibration mode. Theoretical analysis and numerical simulations show that the new design can efficiently scavenge energy at the first two vibration modes. The energy harvesting capability of the multi-mode energy harvester is also compared with that of a cantilever-based energy harvester for single-mode vibration. The results show that the energy harvesting capacity is affected by the damping ratios of different designs. For fixed damping ratio and design dimensions, the multi-mode design has higher energy harvesting capacity than the cantilever-based design.

Energy-based design base shear for RC frames considering global failure mechanism and reduced hysteretic behavior

  • Merter, Onur;Ucar, Taner
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.23-35
    • /
    • 2017
  • A nonlinear static procedure considering work-energy principle and global failure mechanism to estimate base shears of reinforced concrete (RC) frame-type structures is presented. The relative energy equation comprising of elastic vibrational energy, plastic strain energy and seismic input energy is obtained. The input energy is modified with a factor depending on damping ratio and ductility, and the energy that contributes to damage is obtained. The plastic energy is decreased with a factor to consider the reduced hysteretic behavior of RC members. Given the pre-selected failure mechanism, the modified energy balance equality is written using various approximations for modification factors of input energy and plastic energy in scientific literature. External work done by the design lateral forces distributed to story levels in accordance with Turkish Seismic Design Code is calculated considering the target plastic drift. Equating the plastic energy obtained from energy balance to external work done by the equivalent inertia forces considering, a total of 16 energy-based base shears for each frame are derived considering different combinations of modification factors. Ductility related parameters of modification factors are determined from pushover analysis. Relative input energy of multi degree of freedom (MDOF) system is approximated by using the modal-energy-decomposition approach. Energy-based design base shears are compared with those obtained from nonlinear time history (NLTH) analysis using recorded accelerograms. It is found that some of the energy-based base shears are in reasonable agreement with the mean base shear obtained from NLTH analysis.

A Study on Open BIM based Building Energy Evaluation based on Quantitative Factors

  • Kim, In-han;Jin, Jin;Choi, Jung-Sik
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.4
    • /
    • pp.289-296
    • /
    • 2010
  • Energy consumption by buildings accounts for a large part of the world‘s energy consumption. Methods to analyze building energy consumption before construction have been studied for decades. With BIM (Building Information Modeling) technology, architects can easily export building information to data models in order to analyze the design‘s effect on building energy efficiency. Although several BIM-based energy simulation applications are currently available, utilizing these applications for energy efficiency simulation is difficult. In this paper, by comparing existing BIM-based energy applications, the authors test the building energy efficiencies estimated by some BIM models, offer ideas and solutions to problems that appeared during the test process and propose new methods for BIM-based energy evaluation based on quantitative factors.

Seismic Design Method for Structural Walls Based on Energy Dissipation Capacity (에너지 소산능력을 고려한 전단벽의 내진설계)

  • 박홍근;엄태성;정연희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.247-257
    • /
    • 2002
  • Recently, performance-based analysis/design methods such as the capacity spectrum method and the direct displacement-based design method were developed. In these methods, the estimation of energy dissipation capacity due to inelastic behavior of RC structures depends on empirical equations which are not sufficiently accurate. On the other hand, in a recent study, a simplified method for evaluating energy dissipation capacity was developed. In the present study, based on the evaluation method, a new seismic design method for flexure-dominated RC walls is developed. In determination of seismic earthquake load, the proposed design method can address variation of the energy dissipation capacity with design parameters such as dimensions and shapes of cross-sections, axial force, and reinforcement ratio and arrangement. The proposed design method is compared with the current performance-based design methods and the applicability of the proposed method is disscussed.

  • PDF

A STUDY ON THE CONSTRUCTION OF BIM DATA INTEROPERABILITY FOR ENERGY PERFORMANCE ASSESSMENT BASED ON BIM

  • Jungsik Choi;Hyunjae Yoo;Inhan Kim
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.267-273
    • /
    • 2013
  • Early design phase energy modeling is used to provide the design team with first order of magnitude feedback about the impact of various building configurations. For better energy-conscious and sustainable building design and operation, the construction of BIM data interoperability for energy performance assessment in the early design phase is important. The purpose of this study is to suggest construction of BIM data interoperability for energy performance assessment based on BIM. To archive this purpose, the authors have investigated advantage of BIM-based energy performance assessment through comparison with traditional energy performance assessment and suggested requirement for construction of open BIM environment such as BIM data creation, BIM data software practical use, BIM data application and verification. In addition, the authors have suggested BIM data interoperability and BIM energy property mapping method focused on materials.

  • PDF

Energy based design of a novel timber-steel building

  • Goertz, Caleb;Mollaioli, Fabrizio;Tesfamariam, Solomon
    • Earthquakes and Structures
    • /
    • v.15 no.4
    • /
    • pp.351-360
    • /
    • 2018
  • Energy-based methodology is utilized to design novel timber-steel hybrid core wall system. The timber-steel core wall system consists of cross laminated timber (CLT), steel columns, angled brackets and t-stub connections. The CLT wall panels are stiff and strong, and ductility is provided through the steel t-stub connections. The structural system was modelled in SAP2000 finite element program. The hybrid system is explained in detail and validated using first principles. To evaluate performance of the hybrid core system, a 7-story building was designed using both forced-based design and energy based design (EBD) approaches. Performance of the structure was evaluated using 10 earthquakes records selected for 2500 return period and seismicity of Vancouver. The results clearly served as a good example of the benefits of EBD compared to conventional forced based design approaches.

Parametric study on energy demands for steel special concentrically braced frames

  • Dogru, Selcuk;Aksar, Bora;Akbas, Bulent;Shen, Jay
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.265-276
    • /
    • 2017
  • Structures are designed in such a way that they behave in a nonlinear manner when subject to strong ground motions. Energy concepts have been widely used to evaluate the structural performance for the last few decades. Energy based design can be expressed as the balance of energy input and the energy dissipation capacity of the structure. New research is needed for multi degree of freedom systems (MDOFs)-real structures- within the framework of the energy based design methodology. In this paper, energy parameters are evaluated for low-, medium- and high-rise steel special concentrically braced frames (SCBFs) in terms of total energy input and hysteretic energy. Nonlinear dynamic time history analyses are carried out to assess the variation of energy terms along the height of the frames. A seismic energy demand spectrum is developed and hysteretic energy distributions within the frames are presented.

Comparison of Sensitivity Analysis Methods for Building Energy Simulations in Early Design Phases: Once-at-a-time (OAT) vs. Variance-based Methods

  • Kim, Sean Hay
    • KIEAE Journal
    • /
    • v.16 no.2
    • /
    • pp.17-22
    • /
    • 2016
  • Purpose: Sensitivity analysis offers a good guideline for designing energy conscious buildings, which is fitted to a specific building configuration. Sensitivity analysis is, however, still too expensive to be a part of regular design process. The One-at-a-time (OAT) is the most common and simplest sensitivity analysis method. This study aims to propose a reasonable ground that the OAT can be an alternative method for the variance-based method in some early design scenarios, while the variance-based method is known adequate for dealing with nonlinear response and the effect of interactions between input variables, which are most cases in building energy simulations. Method: A test model representing the early design phase is built in the DOE2 energy simulations. Then sensitivity ranks between the OAT and the Variance-based methods are compared at three U.S. sites. Result: Parameters in the upper rank by the OAT do not much differ from those by the Main effect index. Considering design practices that designers would chose the most energy saving design option first, this rank similarity between two methods seems to be acceptable in the early design phase.

A BIM-based Design Method for Energy-Efficient Housing (BIM 기반의 저에너지 주거공간 설계 기법 연구)

  • Yoon, Seung-Hyun;Park, Nam-Hee;Choi, Jin-Won
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2009.04a
    • /
    • pp.187-192
    • /
    • 2009
  • Nowadays, global warming and high oil prices were a threat to the survival of the whole human race. One of a solution to respond to these problems is to reduce energy consumption of building. By adopting energy-saving design, the dissemination of low energy building is required. Therefore, to improve energy efficiency while reducing the usage of the design method is necessary to study actively. BIM-based systems applied to buildings, scheduled to be built by reducing the amount of energy reduction technologies can be analyzed. Depending on various design and equipment to set energy savings goals, you can select an alternative. If it is possible to predict the energy efficiency from the initial stage of design and support designing low energy building, we would be able to expect improvement in the economics of housing due to the reduction of energy consumption.

  • PDF