• 제목/요약/키워드: energy storage properties

검색결과 586건 처리시간 0.03초

MBE growth and magnetic properties of epitaxial FeMn2O4 film on MgO(100)

  • Duong, Van Thiet;Nguyen, Thi Minh Hai;Nguyen, Anh Phuong;Dang, Duc Dung;Duong, Anh Tuan;Nguyen, Van Quang;Cho, Sunglae
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.318.2-318.2
    • /
    • 2016
  • FeM2X4 spinel structures, where M is a transition metal and X is oxygen or sulfur, are candidate materials for spin filters, one of the key devices in spintronics. Both the Fe and M ions can occupy tetrahedral and octahedral sites; therefore, these types of compounds can display various physical and chemical properties [1]. On the other hand, the electronic and magnetic properties of these spinel structures could be modified via the control of cation distribution [2, 3]. Among the spinel oxides, iron manganese oxide is one of promising materials for applications. FeMn2O4 shows inverse spinel structure above 390 K and ferrimagnetic properties below the temperature [4]. In this work, we report on the structural and magnetic properties of epitaxial FeMn2O4 thin film on MgO(100) substrate. The reflection high energy electron diffraction (RHEED) and X-ray diffraction (XRD) results indicated that films were epitaxially grown on MgO(100) without the impurity phases. The valance states of Fe and Mn in the FeMn2O4 film were carried out using x-ray photoelectron spectrometer (XPS). The magnetic properties were measured by vibrating sample magnetometer (VSM), indicating that the samples are ferromagnetic at room temperature. The structural detail and origin of magnetic ordering in FeMn2O4 will be discussed.

  • PDF

고온 축열재료의 특성 (Characteristics of High-Temperature Energy Storage Materials)

  • 신병철;김상돈;박건유;박원훈
    • 태양에너지
    • /
    • 제7권1호
    • /
    • pp.61-74
    • /
    • 1987
  • This review evaluates the state of art in the field of high-temperature energy storage materials and systems. The physical and chemical properties, corrosion data and practical applications of the phase change materials, especially the inorganic salts applicable to storage temperature in the range of $100-850^{\circ}C$ have been summarized. Fluoride salts have excellent thermal storage properties, but these are less attractive in terms of cost and corrosion problem of container materials. The nitrate and nitrite have attractive properties in the temperature range up to $600^{\circ}C$, at which the rate of decomposition becomes unacceptable. Carbonates euteutic salts can be considered as the most promising energy storage material on the basis of their low cost and excellent material compatibility for corrosion in the temperature range up to $850^{\circ}C$.

  • PDF

Design of type 316L stainless steel 700 ℃ high-temperature piping

  • Hyeong-Yeon Lee;Hyeonil Kim;Jaehyuk Eoh
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3581-3590
    • /
    • 2023
  • High-temperature design evaluations were conducted on Type 316L stainless steel piping for a 700 ℃ large-capacity thermal energy storage verification test loop (TESET) under construction at KAERI. The hot leg piping with sodium coolant at 700 ℃ connects the main components of the loop heater, hot storage tank, and air-to-sodium heat exchanger. Currently, the design rules of ASME B31.1 and RCC-MRx provide design procedures for high-temperature piping in the creep range for Type 316L stainless steel. However, the design material properties around 700 ℃ are not available in those rules. Therefore, a number of material tests, including creep tests at various temperatures, were conducted to determine the insufficient material properties and relevant design coefficients so that high-temperature design on the 700 ℃ piping may be possible. It was shown that Type 316L stainless steel can be used in a 700 ℃ high-temperature piping system of Generation IV reactor systems or a renewable energy systems, such as thermal energy storage systems, for a limited operation time.

35 kWh급 플라이휠용 초전도 베어링의 댐핑 특성평가 (Damping Properties of a Superconductor Bearing in a 35 kWh Class Superconductor Flywheel Energy Storage System)

  • 박병준;정세용;한상철;한상진;이대화;한영희
    • Progress in Superconductivity
    • /
    • 제14권1호
    • /
    • pp.66-70
    • /
    • 2012
  • Superconductor flywheel energy storage system (SFESs) is an electro-mechanical battery with high energy storage density, long life, and good environmental affinity. SFESs have been developed for application to a regenerative power of train, the storage of distributed power sources such as solar and wind power, and a power quality improvement. As superconductor bearing is completely passive, it is not necessary to control a system elaborately but accurate analysis in mechanical properties of the HTS bearing is very important for application to SFESs. Stiffness and damping properties are the main index for evaluation the capacity of HTS bearings and make it possible to adjust rotordynamic properties while operating the rotor-bearing system. The superconductor bearing consists of a stator containing single grain YBCO bulks, a ring-type permanent magnet rotor with a strong magnetic field that can reach the bulk surface, and a bearing support for assembly to SFESs frame. In this study, we investigated the stiffness and damping properties of superconductor bearings in 35 kWh SFESs. Finally, we found that 35 kWh superconductor bearing has uniform stiffness properties depend on the various orientations of rotor vibration. We discovered total damping coefficient of superconductor bearing is affected by not only magnetic damping in superconductor bulk but also external damping in bearing support. From the results, it is confirmed that the conducted evaluation can considerably improve energy storage efficiency of the SFESs, and these results can be used for the optimal capacity of superconductor bearings of the SFESs.

Synthesis and Properties of Ionic Liquids:Imidazolium Tetrafluoroborates with Unsaturated Side Chains

  • Min, Gwan-Hong;Yim, Tae-eun;Lee, Hyun-Yeong;Huh, Dal-Ho;Lee, Eun-joo;Mun, Jun-young;Oh, Seung M.;Kim, Young-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권6호
    • /
    • pp.847-852
    • /
    • 2006
  • Imidazolium tetrafluoroborate ionic liquids having unsaturated aliphatic side chains were synthesized and characterized. Most of them are liquid at room temperature and all of them are stable up to $300{^{\circ}C}$. Some imidazolium tetrafluoroborates with an allylic side chain showed much wider voltage windows on the platinum electrode, better conductivities, and lower viscosities compared with the corresponding ionic liquids containing the saturated side chains.

Synthesis and Physicochemical Properties of Ionic Liquids: 1-Alkenyl-2,3-dimethylimidazolium Tetrafluoroborates

  • Min, Gwan-Hong;Yim, Tae-Eun;Lee, Hyun-Yeong;Kim, Hyo-Jin;Mun, Jun-Young;Kim, Sang-Mi;Oh, Seung-M.;Kim, Young-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권9호
    • /
    • pp.1562-1566
    • /
    • 2007
  • 1-Alkenyl-2,3-dimethylimidazolium tetrafluoroborate ionic liquids having an olefinic substituent were synthesized and characterized. Among them, [AMMIm]BF4 with an allyl group showed lower viscosity, higher ionic conductivity, and a wider electrochemical window compared with its analogue having a saturated alkyl substituent. An EDLC with [AMMIm]BF4 showed better performance than that with [PMMIm]BF4, too.

Synthesis and characterization of amorphous NiWO4 nanostructures

  • Nagaraju, Goli;Cha, Sung Min;Yu, Jae Su
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.392.1-392.1
    • /
    • 2016
  • Nowadays, research interest in developing the wearable devices are growing remarkably. Portable consumer electronic systems are becoming lightweight, flexible and even wearable. In fact, wearable electronics require energy storage device with thin, foldable, stretchable and conformable properties. Accordingly, developing the flexible energy storage devices with desirable abilities has become the main focus of research area. Among various energy storage devices, supercapacitors have been considered as an attractive next generation energy storage device owing to their advantageous properties of high power density, rapid charge-discharge rate, long-cycle life and high safety. The energy being stored in pseudocapacitors is relatively higher compared to the electrochemical double-layer capacitors, which is due to the continuous redox reactions generated in the electrode materials of pseudocapacitors. Generally, transition metal oxides/hydroxide (such as $Co_3O_4$, $Ni(OH)_2$, $NiFe_2O_4$, $MnO_2$, $CoWO_4$, $NiWO_4$, etc.) with controlled nanostructures (NSs) are used as electrode materials to improve energy storage properties in pseudocapacitors. Therefore, different growth methods have been used to synthesize these NSs. Of various growth methods, electrochemical deposition is considered to be a simple and low-cost method to facilely integrate the various NSs on conductive electrodes. Herein, we synthesized amorphous $NiWO_4$ NSs on cost-effective conductive textiles by a facile electrochemical deposition. The as-grown amorphous $NiWO_4$ NSs served as a flexible and efficient electrode for energy storage applications.

  • PDF

컴팩션된 Ti-Mn계 합금의 수소저장 및 방출 특성 (Hydrogen Storage and Release Properties for Compacted Ti-Mn Alloy)

  • 김종석;한원비;조현석;정문선;정성욱;조원철;강경수;김창희;배기광;김종원;박주식
    • 한국수소및신에너지학회논문집
    • /
    • 제28권1호
    • /
    • pp.9-16
    • /
    • 2017
  • Hydrogen forms metal hydrides with some metals and alloys leading to solid-state storage under moderate temperature and pressure that gives them the safety advantage over the gas and liquid storage methods. However, it has disadvantages of slow hydrogen adsorption-desorption time and low thermal conductivity. To improve characteristics of metal hydrides, it is important that activation and thermal conductivity of metal hydrides are improved. In this study, we have been investigated hydrogen storage properties of Hydralloy C among Ti-Mn alloys. Also, the characteristics of activation and thermal conductivity of Hydralloy C were enhanced to improve kinetics of hydrogen adsorption-desorption. As physical activation method, PHEM (planetary high energy mill) was performed in Ar or $H_2$ atmosphere. Hydralloy C was also activated by $TiCl_3$ catalyst. To improve thermal conductivity, various types of ENG (expanded natural graphite) were used. The prepared samples were compacted at pressure of 500 bar. As a result, the activation properties of $H_2$ PHEM treated Hydralloy C was better than the other activation methods. Also, the amounts of hydrogen storage showed up to 1.6 wt%. When flake type ENG was added to Hydralloy C, thermal conductivity and hydrogen storage properties were improved.