• Title/Summary/Keyword: energy storage efficiency

Search Result 644, Processing Time 0.026 seconds

Modeling of a Compressed Air Energy Electrification by Using Induction Generator Based on Field Oriented Control Principle

  • Vongmanee, Varin;Monyakul, Veerapol
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1511-1519
    • /
    • 2014
  • The objective of this paper is to propose a modelling of a small compressed air energy storage system, which drives an induction generator based on a field-oriented control (FOC) principle for a renewable power generation. The proposed system is a hybrid technology of energy storage and electrification, which is developed to use as a small scale of renewable energy power plant. The energy will be transferred from the renewable energy resource to the compressed air energy by reciprocating air compressor to be stored in a pressurized vessel. The energy storage system uses a small compressed air energy storage system, developed as a small unit and installed above ground to avoid site limitation as same as the conventional CAES does. Therefore, it is suitable to be placed at any location. The system is operated in low pressure not more than 15 bar, so, it easy to available component in country and inexpensive. The power generation uses a variable speed induction generator (IG). The relationship of pressure and air flow of the compressed air, which varies continuously during the discharge of compressed air to drive the generator, is considered as a control command. As a result, the generator generates power in wide speed range. Unlike the conventional CAES that used gas turbine, this system does not have any combustion units. Thus, the system does not burn fuel and exhaust pollution. This paper expresses the modelling, thermodynamic analysis simulation and experiment to obtain the characteristic and performance of a new concept of a small compressed air energy storage power plant, which can be helpful in system designing of renewable energy electrification. The system was tested under a range of expansion pressure ratios in order to determine its characteristics and performance. The efficiency of expansion air of 49.34% is calculated, while the efficiency of generator of 60.85% is examined. The overall efficiency of system of approximately 30% is also investigated.

A Prediction-based Energy-conserving Approximate Storage and Query Processing Schema in Object-Tracking Sensor Networks

  • Xie, Yi;Xiao, Weidong;Tang, Daquan;Tang, Jiuyang;Tang, Guoming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.5
    • /
    • pp.909-937
    • /
    • 2011
  • Energy efficiency is one of the most critical issues in the design of wireless sensor networks. In object-tracking sensor networks, the data storage and query processing should be energy-conserving by decreasing the message complexity. In this paper, a Prediction-based Energy-conserving Approximate StoragE schema (P-EASE) is proposed, which can reduce the query error of EASE by changing its approximate area and adopting predicting model without increasing the cost. In addition, focusing on reducing the unnecessary querying messages, P-EASE enables an optimal query algorithm to taking into consideration to query the proper storage node, i.e., the nearer storage node of the centric storage node and local storage node. The theoretical analysis illuminates the correctness and efficiency of the P-EASE. Simulation experiments are conducted under semi-random walk and random waypoint mobility. Compared to EASE, P-EASE performs better at the query error, message complexity, total energy consumption and hotspot energy consumption. Results have shown that P-EASE is more energy-conserving and has higher location precision than EASE.

Network Coding for Energy-Efficient Distributed Storage System in Wireless Sensor Networks

  • Wang, Lei;Yang, Yuwang;Zhao, Wei;Lu, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.9
    • /
    • pp.2134-2153
    • /
    • 2013
  • A network-coding-based scheme is proposed to improve the energy efficiency of distributed storage systems in WSNs (Wireless Sensor Networks). We mainly focus on two problems: firstly, consideration is given to effective distributed storage technology; secondly, we address how to effectively repair the data in failed storage nodes. For the first problem, we propose a method to obtain a sparse generator matrix to construct network codes, and this sparse generator matrix is proven to be the sparsest. Benefiting from this matrix, the energy consumption required to implement distributed storage is reduced. For the second problem, we designed a network-coding-based iterative repair method, which adequately utilizes the idea of re-encoding at intermediate nodes from network coding theory. Benefiting from the re-encoding, the energy consumption required by data repair is significantly reduced. Moreover, we provide an explicit lower bound of field size required by this scheme, which implies that it can work over a small field and the required computation overhead is very low. The simulation result verifies that the proposed scheme not only reduces the total energy consumption required to implement distributed storage system in WSNs, but also balances energy consumption of the networks.

A Study on Performance Improvement of Hybrid Energy Storage System for Mild HEV (마일드 하이브리드 차량용 복합형 에너지 저장장치의 성능개선에 관한 연구)

  • Lee, Back-Haeng;Shin, Dong-Hyun;Kim, Hee-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1763-1769
    • /
    • 2007
  • To improve the cycle-life and efficiency of an energy storage system for HEV, a dynamic control system consisted of a switch between a battery and an ultracapacitor module is proposed, which is appropriate for mild hybrid vehicle with 42V power net. The switch can be controlled based on the status of the battery and the ultracapacitor module, and a control algorithm that could largely decrease the number of high charging current peak is also implemented. Therefore the cycle life of the battery can be improved such that it is suitable for a mild hybrid vehicle with frequent engine start-stop and regenerative-braking. Also, by maximizing the use of the ultracapacitor, the system efficiency during high current charging and discharging operation is improved. Finally, this system has the effects that improves the efficiency of energy storage system and reduces the fuel consumption of a vehicle. To verify the validity of the proposed system, this paper presented cycles test results of different energy storage systems: a simple VRLA battery, hybrid energy Pack (HEP, a VRLA battery in Parallel with Ultracapacitor) and a HEP with a switch that controlled by energy management system (EMS). From the experimental result, it was proved the effectiveness of the algorithm.

Thermal Energy Balance Analysis of a Packed Bed for Rock Cavern Thermal Energy Storage (충전층을 이용한 암반공동 열에너지저장시스템의 열에너지 수지 분석)

  • Park, Jung-Wook;Ryu, Dongwoo;Park, Dohyun;Choi, Byung-Hee;Synn, Joong-Ho;Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.241-259
    • /
    • 2013
  • A packed bed thermal energy storage (TES) consisting of solid storage medium of rock or concrete through which the heat transfer fluid is circulated is considered as an attractive alternative for high temperature sensible heat storage, because of the economical viability and chemical stability of storage medium and the simplicity of operation. This study introduces the technologies of packed bed thermal energy storage, and presents a numerical model to analyze the thermal energy balance and the performance efficiency of the storage system. In this model, one dimensional transient heat transfer problem in the storage tank is solved using finite difference method, and temperature distribution in a storage tank and thermal energy loss from the tank wall can be calculated during the repeated thermal charging and discharging modes. In this study, a high temperature thermal energy storage connected with AA-CAES (advanced adiabatic compressed air energy storage) was modeled and analyzed for the temperature and the energy balance in the storage tank. Rock cavern type TES and above-ground type TES were both simulated and their results were compared in terms of the discharging efficiency and heat loss ratio.

High Efficiency Power Conversion System for Battery-Ultracapacitor Hybrid Energy Storages (배터리-울트라커패시터 하이브리드 에너지 저장장치를 위한 고효율 전력변환 시스템)

  • Yoo, Ju-Seung;Choi, Woo-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.523-531
    • /
    • 2012
  • This paper proposes a high efficiency power conversion system for battery-ultracapacitor hybrid energy storages. The proposed system has only one bidirectional dc-dc converter for hybrid power source with batteries and ultracapacitors. The hybrid power source has bidirectional switching circuits for selecting one energy storage device. Bidirectional power flow between the energy storage device and high voltage capacitor can be controlled by one bidirectional converter. An asymmetrical switching method is applied to the bidirectional converter for high power efficiency. Switching power losses are reduced by zero-voltage switching of power switches. System operation and design considerations are presented. The experimental results are provided to verify the performance of the proposed system.

A Study on Energy Efficiency in Servers Adopting AFA(All-Flash Array) (AFA(All-Flash Array) 탑재 서버의 에너지 효율성에 대한 연구)

  • Kim, Young Man;Han, Jaeil
    • Journal of Information Technology Services
    • /
    • v.18 no.1
    • /
    • pp.79-90
    • /
    • 2019
  • Maximizing energy efficiency minimizes the energy consumption of computation, storage and communications required for IT services, resulting in economic and environmental benefits. Recent advancement of flash and next generation non-volatile memory technology and price decrease of those memories have led to the rise of so-called AFA (All-Flash Array) storage devices made of flash or next generation non-volatile memory. Currently, the AFA devices are rapidly replacing traditional storages in the high-performance servers due to their fast input/output characteristics. However, it is not well known how effective the energy efficiency of the AFA devices in the real world. This paper shows input/output performance and power consumption of the AFA devices measured on the Linux XFS file system via experiments and discusses energy efficiency of the AFA devices in the real world.

Optimal Energy Shift Scheduling Algorithm for Energy Storage Considering Efficiency Model

  • Cho, Sung-Min
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1864-1873
    • /
    • 2018
  • Energy shifting is an innovative method used to obtain the highest profit from the operation of energy storage systems (ESS) by controlling the charge and discharge schedules according to the electricity prices in a given period. Therefore, in this study, we propose an optimal charge and discharge scheduling method that performs energy shift operations derived from an ESS efficiency model. The efficiency model reflects the construction of power conversion systems (PCSs) and lithium battery systems (LBSs) according to the rated discharge time of a MWh-scale ESS. The PCS model was based on measurement data from a real system, whereas for the LBS, we used a circuit model that is appropriate for the MWh scale. In addition, this paper presents the application of a genetic algorithm to obtain the optimal charge and discharge schedules. This development represents a novel evolutionary computation method and aims to find an optimal solution that does not modify the total energy volume for the scheduling process. This optimal charge and discharge scheduling method was verified by various case studies, while the model was used to realize a higher profit than that realized using other scheduling methods.

Thermodynamic performance of 2-PCM latent heat thermal energy storage system (2-PCM 잠열축열 시스템의 열역학적 성능)

  • 이세균;우정선;이재효;김한덕
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.2
    • /
    • pp.189-199
    • /
    • 2000
  • This paper investigates the thermodynamic performance of latent heat thermal energy storage system using two phase change materials(2-PCM system). The thermodynamic merit of using 2-PCM is clear in terms of exergetic efficiency, which is substantially higher than that of 1-PCM system. Optimum phase change temperature to maximize the exergetic efficiency exists for each case. The heat transfer area ratio of high temperature storage unit, X, becomes another important parameter for 2-PCM system if the phase change temperatures of given materials are different from those of optimum conditions. It is a good approximation for X$_{opt}$ to be 0.5 when optimum phase change temperatures are used. Otherwise X$_{opt}$ is determined differently as a function of given phase change temperatures.res.

  • PDF