• Title/Summary/Keyword: energy specific demand

Search Result 93, Processing Time 0.027 seconds

Reduction of energy demand for UF cross-flow membranes in MBR by sponge ball cleaning

  • Issa, Mohammad;Geissen, Sven-Uwe;Vogelpohl, Alfons
    • Membrane and Water Treatment
    • /
    • v.12 no.2
    • /
    • pp.65-73
    • /
    • 2021
  • Sponge ball cleaning can generate an abrasion effect, which leads to an attractive increasing in both permeate flux and membrane rejection. The aim of this study was to investigate the influence of the daily sponge ball cleaning (SBC) on the performance of different UF cross-flow membrane modules integrated with a bioreactor. Two 1"-membrane modules and one 1/2"-membrane module were tested. The parameters measured and controlled are temperature, pH, viscosity, particle size, dissolved organic carbon (DOC), total suspended solids (TSS), and permeate flux. The permeate flux could be improved by 60%, for some modules, after 11 days of daily sponge ball cleaning at a transmembrane pressure of 350 kPa and a flow velocity of 4 m/s. Rejection values of all tested modules were improved by 10%. The highest permeate flux of 195 L/㎡.h was achieved using a 1"-membrane module with the aid of its negatively charged membrane material and the daily sponge ball cleaning. In addition, the enhancement in the permeate flux caused by daily sponge ball cleaning improved the energy specific demand for all tested modules. The negatively charged membrane showed the lowest energy specific demand of 1.31 kWh/㎥ in combination with the highest flux, which is a very competitive result.

Load Management of Natural Gas (천연가스 부하관리)

  • Choi, Keum-Nam;Kim, Yong-Chan;Hong, Hi-Ki;Kim, Sang-No;Kim, In-Taek;Jeon, Ho-Cheol
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.264-269
    • /
    • 2006
  • Efficient load management on natural gas is strongly required to allow stable and reasonable energy use. The present study investigated domestic and international cases for demand management of natural gas. The directions of load management were discussed. The reasonable evaluation methods of demand management were analyzed and specific evaluation items were suggested.

  • PDF

Electricity forecasting model using specific time zone (특정 시간대 전력수요예측 시계열모형)

  • Shin, YiRe;Yoon, Sanghoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.2
    • /
    • pp.275-284
    • /
    • 2016
  • Accurate electricity demand forecasts is essential in reducing energy spend and preventing imbalance of the power supply. In forcasting electricity demand, we considered double seasonal Holt-Winters model and TBATS model with sliding window. We selected a specific time zone as the reference line of daily electric demand because it is least likely to be influenced by external factors. The forecasting performance have been evaluated in terms of RMSE and MAPE criteria. We used the observations ranging January 4, 2009 to December 31 for testing data. For validation data, the records has been used between January 1, 2012 and December 29, 2012.

A Model of Four Seasons Mixed Heat Demand Prediction Neural Network for Improving Forecast Rate (예측율 제고를 위한 사계절 혼합형 열수요 예측 신경망 모델)

  • Choi, Seungho;Lee, Jaebok;Kim, Wonho;Hong, Junhee
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.82-93
    • /
    • 2019
  • In this study, a new model is proposed to improve the problem of the decline of predict rate of heat demand on a particular date, such as a public holiday for the conventional heat demand forecasting system. The proposed model was the Four Season Mixed Heat Demand Prediction Neural Network Model, which showed an increase in the forecast rate of heat demand, especially for each type of forecast date (weekday/weekend/holiday). The proposed model was selected through the following process. A model with an even error for each type of forecast date in a particular season is selected to form the entire forecast model. To avoid shortening learning time and excessive learning, after each of the four different models that were structurally simplified were learning and a model that showed optimal prediction error was selected through various combinations. The output of the model is the hourly 24-hour heat demand at the forecast date and the total is the daily total heat demand. These forecasts enable efficient heat supply planning and allow the selection and utilization of output values according to their purpose. For daily heat demand forecasts for the proposed model, the overall MAPE improved from 5.3~6.1% for individual models to 5.2% and the forecast for holiday heat demand greatly improved from 4.9~7.9% to 2.9%. The data in this study utilized 34 months of heat demand data from a specific apartment complex provided by the Korea District Heating Corp. (January 2015 to October 2017).

Lithium Air Battery: Alternate Energy Resource for the Future

  • Zahoor, Awan;Christy, Maria;Hwang, Yun-Ju;Nahm, Kee-Suk
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.14-23
    • /
    • 2012
  • Increasing demand of energy, the depletion of fossil fuel reserves, energy security and the climate change have forced us to look upon alternate energy resources. For today's electric vehicles that run on lithium-ion batteries, one of the biggest downsides is the limited range between recharging. Over the past several years, researchers have been working on lithium-air battery. These batteries could significantly increase the range of electric vehicles due to their high energy density, which could theoretically be equal to the energy density of gasoline. Li-air batteries are potentially viable ultra-high energy density chemical power sources, which could potentially offer specific energies up to 3000 $Whkg^{-1}$ being rechargeable. This paper provides a review on Lithium air battery as alternate energy resource for the future.

Enhancement of Electrical Conductivity for Ag Grid using Electrical Sintering Method (정전류 전기 소결법을 이용한 Ag 전극 배선의 전도성 향상)

  • Hwang, Jun Y.;Moon, Y.J.;Lee, S.H.;Kang, K.;Kang, H.;Cho, Y.J.;Moon, S.J.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.114.1-114.1
    • /
    • 2011
  • Electrical sintering of the front electrode for crystalline silicon solar cells was performed applying a constant DC current to the printed lines. Conducting lines were printed on glass substrate by a drop-on-demand (DOD) inkjet printer and silver nanoparticle ink. Specific resistance and microstructure of sintered silver lines and were measured with varying DC current. To find the relation between temperature increase with changing applied current and specific resistance, temperature elevation was also calculated. Sintering process finished within a few milliseconds. Increasing applied DC current, specific resistance decreased and grain size increased after sintering. Achieved minimum specific resistance is approximately 1.7 times higher than specific resistance of the bulk silver.

  • PDF

Development of physical activity classification table for Koreans: using the Compendium of physical activities in the United States (한국인을 위한 신체활동분류표 개발: 미국의 신체활동목록 (Compendium of physical activities)을 이용하여)

  • Kim, Eun-Kyung;Jun, Ha-Yeon;Gwak, Ji-Yeon;Fenyi, Justice Otoo
    • Journal of Nutrition and Health
    • /
    • v.54 no.2
    • /
    • pp.129-138
    • /
    • 2021
  • To set the estimated energy requirement (EER) in Dietary Reference Intakes for Koreans (KDRI), we need the coefficient by physical activity stage, as determined by the physical activity level(PAL). Thus, there has been demand for a tool to calculate PAL based on the physical activity diary. This study was undertaken to develop a physical activity (PA) classification table for Koreans, using the 2011 Compendium of physical activities in the United States. The PA classification table for Koreans contains 262 codes, and values of the metabolic equivalent of task (MET) for specific activities. Of these, 243 PAs which do not have Korean specific data or information, were selected from the 2011 Compendium of PAs that originated in the United States; another 19 PAs were selected from the previous research data of Koreans. The PA classification table is codified to facilitate the selection of energy values corresponding to each PA. The code for each PA consists of a single letter alphabet (activity category) and four numeric codes that display the activity type (2 digit number), activity intensity (1 digit number), and specific activities (1 digit number). In addition, the intensity (sedentary behavior, low, middle and high) of specific PA and its rate of energy expenditure in MET are presented together. The activity categories are divided into 4 areas: Daily Activity (A), Movement (B), Occupation (C), and Exercise and Sports (D). The developed PA classification table can be applied to quantify the energy cost of PA for adults in research or practice, and to assess energy expenditure and physical activity levels based on self-reported PA.

Trend Study on Research for Energy Consumption and Saving Method in Residential Sector of Japan (일본의 민생주택부문 에너지소비 및 절약기술관련 연구 개발동향)

  • Yoo, Jung-Hyun;Yuasa, Kazuhiro;Kim, Yong-Sick
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.819-824
    • /
    • 2008
  • Energy consumption in Korea and Japan has already progressed to high level. Especially, it will be important to take up the effort to achieve further energy savings in residential sector that has significant increase both nations. For this reason, research for energy consumption and saving method in residential sector compare Korea with Japan that of similar data to grasps the direction for energy savings. In addition for introduction of distributed energy system to residential sector, such as apartment house, the electricity and gas demand was simulated. To be more specific, several key characteristics were studied, such as housing type housing scale and width of common space.

  • PDF

Korean V2G Technology Development for Flexible Response to Variable Renewable Energy (변동성 재생e 유연 대응을 위한 한국형 V2G 기술개발)

  • Son, Chan;Yu, Seung-duck;Lim, You-seok;Park, Ki-jun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.329-333
    • /
    • 2021
  • V2G (Vehicle to Grid) technology for an EV (Electric Vehicle) has been assumed as so promising in a near future for its useful energy resource concept but still yet to be developed around the world for specific service purposes through various R&BD projects. Basically, V2G returns power stored in vehicle at a cheaper or unused time to the grid at more expensive or highly peaked time, and is accordingly supposed to provide such roles like peak shaving or load levelling according to customer load curve, frequency regulation or ancillary reserves, and balancing power fluctuation to grid from the weather-sensitive renewable sources like wind or solar generations. However, it has recently been debated over its prominent usage as diffusing EVs and the required charging/discharging infrastructure, partially for its addition of EV ownership costs with more frequent charging/discharging events and user inconvenience with a relative long-time participation in the previously engaged V2G program. This study suggests that a Korean DR (Demand Response) service integrated V2G system especially based upon a dynamic charge/pause/discharge scheme newly proposed to ISO/IEC 15118 rev. 2 can deal with these concerns with more profitable business model, while fully making up for the additional component (ex. battery) and service costs. It also indicates that the optimum economic, environmental, and grid impacts can be simulated for this V2G-DR service particularly designed for EV aggregators (V2G service providers) by proposing a specific V2G engagement program for the mediated DR service providers and the distributed EV owners.

Cutting Characteristics Depending on Coolant Level in Turning Process (절삭유 레벨에 따른 선삭가공 절삭특성)

  • 양승한;이영문
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.80-86
    • /
    • 2004
  • With the increasing demand of environmentally clean machining in recent years, the use of coolants has been restricted extensively. In this paper, a multiple comparison method(Tukey's HSD method) is proposed to choose the optimum level of coolant necessary for an efficient and environmentally clean machining. The cutting temperature, specific cutting energy, and surface roughness in turning process are analysed by ANOVA(Analysis Of Variance) and Tukey's HSD method. From the experimental results and statistical analysis, it is found that the optimum condition of coolant level is 10 ml/min with 6% mix ratio, which is almost half of the commonly used level.