• Title/Summary/Keyword: energy space

Search Result 3,298, Processing Time 0.035 seconds

Performance Variation of the Air Curtain for Various Discharge Angles in Feating Space (난방공간에서 에어커튼의 토출각도 변화에 따른 성능 변화)

  • Sung, Sun-Kyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.2
    • /
    • pp.57-63
    • /
    • 2010
  • Air curtains are widely used for gates of shopping mall, warehouse, cold stores and refrigerated display cabinets. The purpose of the air curtain is to reduce the infiltration of outdoor air and heat loss from the air conditioning space to ambient air. The discharge angle of air curtain is very important as the sealing efficiency is affected by it. This paper presents a performance of single jet air curtain in heating space when the discharge angle of nozzle changes. A numerical simulation is used to study the influence of various parameters on the efficiency of the downward-blowing air curtain device which is installed inside of the wall above the door. The performance of the air curtain is evaluated by sealing efficiency which provides the assessment of the energy savings. A condition of discharge angle that has the highest sealing efficiency is proposed.

Design Space Exploration of Many-Core Architecture for Sound Synthesis of Guitar on Portable Device (휴대 장치용 기타 음 합성을 위한 매니코어 아키텍처의 디자인 공간 탐색)

  • Kang, Myeongsu;Kim, Jong-Myon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.01a
    • /
    • pp.1-4
    • /
    • 2014
  • Although physical modeling synthesis is becoming more and more efficient in rich and natural high-quality sound synthesis, its high computational complexity limits its use in portable devices. This constraint motivated research of single-instruction multiple-data many-core architectures that support the tremendous amount of computations by exploiting massive parallelism inherent in physical modeling synthesis. Since no general consensus has been reached which grain sizes of many-core processors and memories provide the most efficient operation for sound synthesis, design space exploration is conducted for seven processing element (PE) configurations. To find an optimal PE configuration, each PE configuration is evaluated in terms of execution time, area and energy efficiencies. Experimental results show that all PE configurations are satisfied with the system requirements to be implemented in portable devices.

  • PDF

The Modeling of Plants Form and Its Experimental Application to the Space Design (식물 형태의 조형화와 조경 공간 디자인에의 실험적 적용)

  • Kim, Soo-Yeon
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2005.05a
    • /
    • pp.247-248
    • /
    • 2005
  • Human beings are perhaps most outstanding in longing for the beauty in order. The natural form have a power to be self-respect and also a repetitious pattern. Such natural forms will be the source of design, its constituent principles. Such natural forms will be the source of design, its constituent principle is that the minimum energy system constitutes the maximum and various systems, its forms come int being during the harmony of forces, and various systems, its forms come into being during the harmony of forces, and it has a light structure to surmount any influence resulting from the increasement of its size. Therefore, in organizing space, such order of natural forms will provide space with vitality and can express the relation of freedom as order.

  • PDF

Dynamic Analysis of Slotless Permanent Magnet Linear Synchronous Motor using the 3-D Space Harmonic Method

  • Ahn, Ho-Jin;Kang, Gyu-Hong;Kim, Gyu-Tak
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.4
    • /
    • pp.162-167
    • /
    • 2002
  • This paper presents the dynamic analysis method for a slotless permanent magnet linear synchronous motor (PMLSM) using the 3-D space harmonic method. Instantaneous emf and thrust are considered by movement of the PM and instantaneous armature current instead of $K_E$ (back-emf constant) and $K_F$(thrust force constant) for accurate results. The results of magnetic field distribution, back-emf, inductance, and thrust are in agreement with 2-D FEM and experimental results. To confirm the validity of this method, the calculated results are compared to measured ones.

ICT Device Impacts and Development Trends on Cosmic Radiation Environment (우주방사선 환경 ICT 소자 영향 및 개발 동향)

  • Yi, Y.;Jeong, S.K.;Hwang, I.;Yang, Y.S.;Lee, M.L.;Suh, D.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.2
    • /
    • pp.21-29
    • /
    • 2022
  • Cosmic radiation environments having extremely high-energy particles and photons cause severe malfunctions of electrical components in space and terrestrial regions. In this study, we revisit basic knowledge on radiation effects in ICT electrical devices, such as single event effect, total ionizing dose, and displacement damage. To avoid such soft errors and system failures, we introduce essential technical approaches from the perspectives of materials, layouts, circuits, and systems, including current research trends. By considering several techniques and Space EEE part standards, we suggest possible directions that can invoke New Space Era technology.

Impedance-Based Stability Analysis of DC-DC Boost Converters Using Harmonic State Space Model

  • Park, Bumsu;Heryanto, Nur A.;Lee, Dong-Choon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.255-261
    • /
    • 2021
  • This paper proposes impedance-based stability analysis of DC-DC boost converters, where a harmonic state space (HSS) modeling technique is used. At first, the HSS model of the boost converter is developed. Then, the closed-loop output impedance of the converter is derived in frequency domain using small signal modeling including frequency couplings, where harmonic transfer function (HTF) matrices of the open-loop output impedance, the duty-to-output, and the voltage controller are involved. The frequency response of the output impedance reveals a resonance frequency at low frequency region and frequency couplings at sidebands of switching frequency which agree with the simulation and experimental result.

Tracing the first galaxies with the James Webb Space Telescope

  • Tacchella, Sandro
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.41.2-41.2
    • /
    • 2021
  • I will start with presenting new results on the stellar populations of galaxies at a redshift of z=9-11, when the universe was only a few hundred million years old. By combining Hubble Space Telescope observations with Spitzer imaging data, I will show how challenging it is currently to measure basic physical properties of these objects such as star-formation rates, stellar masses and stellar ages. In particular, the current measurements greatly depend on the assumptions (priors) for the spectral energy distribution modeling. Finally, I will discuss how the James Webb Space Telescope (JWST) will revolutionize this field next year and allow us to probe and characterize the first generation of galaxies in much greater detail. Specifically, I will present an overview of the JWST Advanced Deep Extragalactic Survey (JADES), a joint program of the JWST/NIRCam and NIRSpec Guaranteed Time Observations (GTO) teams involving 950 hours of observation.

  • PDF

Fabrication and Characterization of Triboelectric Energy Harvester

  • Sung, Tae-Hoon;Lee, Jun Young;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.631-631
    • /
    • 2013
  • Battery has major drawbacks including its size and life expectancy, and environmental problem. As an alternative, energy harvesting is emerging as a potential solution to replace battery along with more energy-efficient IT devices. The idea of harnessing energy from our living environment is sustainable, semi-permanent, and eco-friendly. Also, unlike battery, energy harvester does not require much space to store energy. Therefore, energy harvesting can provide a better source of power for small, portable, and wireless devices. Among various ways of harvesting energy from our surroundings, triboelectricity is chosen due to its potential to be miniaturized, and efficient. Triboelectric effect occurs as two different materials with different polarity of charge separation come into contact through friction, and then become separated so that electric potential difference is achieved. In this research, such characteristic of triboelectricity is used as a way to convert ambient mechanical energy into electric energy.Series of recent researches have shown promising results that the triboelectric energy harvester can be simple and cost effective. However, sufficient electricity level required to operate mobile devices has not yet been achieved.In this research, our group focuses on the design and optimization of triboelectric energy harvesting device to enhance its output. By using maskless lithography to pattern Kapton film and silicon substrate, which is used as a mold for PDMS thin layer, and sputtering metal electrodes on each side, we fabricate and demonstrate different designs of triboelectric energy harvester that utilizes the contact electrification between a polymer thin film and a metal thin foil. In order to achieve optimized result, the output voltage and current are measured under diverse conditions, which include different surface structure and pattern, material, and the gap between layers.

  • PDF

Review on Thermal Storage Media for Cavern Thermal Energy Storage (지하공동 열에너지 저장을 위한 축열 매질의 기술 현황 검토)

  • Park, Jung-Wook;Park, Do-Hyun;Choi, Byung-Hee;Han, Kong-Chang
    • Tunnel and Underground Space
    • /
    • v.22 no.4
    • /
    • pp.243-256
    • /
    • 2012
  • Developing efficient and reliable energy storage system is as important as exploring new energy resources. Energy storage system can balance the periodic and quantitative mismatch between energy supply and energy demand and increase the energy efficiency. Industrial waster heat and renewable energy such as solar energy can be stored by the thermal energy storage (TES) system at high and low temperatures. TES system using underground rock carven is considered as an attractive alternative for large-scale storage, because of low thermal conductivity and chemical safety of surrounding rock mass. In this report, the development of available thermal energy storage methods and the characteristics of storage media were introduced. Based on some successful applications of cavern storage and high-temperature storage reported in the literature, the applicabilities and practicabilities of storage media and technologies for large-scale cavern thermal energy storage (CTES) were reviewed.

Qualitative and Quantitative Analysis of Space Minerals using Laser-Induced Breakdown Spectroscopy and Raman Spectroscopy (레이저 유도 분해 분광법과 라만 분광법을 이용한 우주 광물의 정성 및 정량 분석 기법)

  • Kim, Dongyoung;Yoh, Jack J.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.6
    • /
    • pp.519-526
    • /
    • 2018
  • In order to analyze space resources, it had to be brought to earth. However, using laser-induced breakdown spectroscopy(LIBS) and Raman spectroscopy, it is possible to analyze qualitative and quantitative analysis of space minerals in real time. LIBS is a spectroscopic method in which a high energy laser is concentrated on a material surface to generate a plasma, and the emitted light is acquired through a spectroscope to analyze the atomic composition. Raman spectroscopy is a spectroscopic method that analyzes the molecular structure by measuring scattered light. These two spectroscopic methods are complementary spectroscopic methods for analyzing the atoms and molecules of unknown minerals and have an advantage as space payloads. In this study, data were analyzed qualitatively by using principal component analysis(PCA). In addition, a mixture of two minerals was prepared and a quantitative analysis was performed to predict the concentration of the material.