• Title/Summary/Keyword: energy space

Search Result 3,298, Processing Time 0.03 seconds

Study on the Policy Priority for Low Carbon Green City (저탄소 녹색도시 조성을 위한 정책 우선순위 연구)

  • Shin, Yeon-Hee;Min, Mi-Youn;Hwang, Eun-Joo;Kim, Jong Dae
    • Journal of Environmental Science International
    • /
    • v.26 no.8
    • /
    • pp.977-991
    • /
    • 2017
  • The purpose of this study is to establish common indicators that constitute a "low-carbon green city" and determine their priorities from the perspective of Incheon Metropolitan City with a view to help develop its climate change strategy strategic city. Several major cities, domestic and overseas, were benchmarked to come up with preliminary indicators consisting of six areas, twenty two planning factors, and 74 indicators. In order to evaluate the validity and relevance of preliminary indicators, expert FGI (Focus Group Interview) was conducted that changed the numbers of final indicators to six areas, twenty two planning factors, and 82 indicators. Finally, AHP (Analytic Hierarchy Process) was conducted to assign relative importance (i.e. weights) to each indicator. Through the layering process of AHP, the upper category of "field" and lower category of "planning factors" were set up as policy prerequisites for constructing a low-carbon green city (6 fields, 22 planning factors). The AHP results for the first level (fields), green city space was ranked first, followed by energy and resource circulation, green traffic, ecological preservation, green logistics, and governance. Among all planning factors, land use, energy efficiency, traffic system improvement, location planning, securing of ecological area, efficiency of logistics, and cooperative organization showed the highest priorities.

The Effect of the Ground Composition on Thermal Environment in Multi -residential Building Block (공동주택 단지 내 지반 특성 및 지반 구성에 따른 열적 특성에 관한 연구)

  • Hwang, Hyo-Keun;Song, Doo-Sam
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.88-97
    • /
    • 2009
  • In these days, it attracts our attention to create a green outdoor environment around the building block in urban area. Green space and permeable ground covering are increased by laws and regulations. According to these trends, variety researches for improving outdoor environment are accomplished at this moment. However, the problems for outdoor environment such as heat island effect and air contaminant in urban area are still reported. The purpose of this study is to examine the variables to affect the formation of outdoor thermal environment by quantitative analysis. As a initial study, in this paper, the effect of ground composition on changes of surface temperature and heat flux in multi-residential building were analyzed by field measurement and numerical simulation. Through field measurement, the surface temperature and heat flux of artificial ground in multi-residential building in Suwon city were measured. The result showed that the surface temperature was decreased by about $20^{\circ}C$ with afforestation of artificial ground compared with those of concrete covering. Moreover, the inner temperature of artificial ground was changed as same behaviors of outdoor temperature changes to depths of 20cm. In simulation, the effect of soil types and depth of artificial ground on the changes of the surface temperature and heat flux were analyzed. As results, the natural soil ground was more effective against lowering the surface temperature than any other cases in the analyzed cases.

An analysis on the utility of congealing water to improve efficiency of the air cooling equipment and save energy (냉방설비 성능개선 및 에너지 절약을 위한 응결수 활용성 분석)

  • Park, Keun-Soo;Park, Young-Ho;Yu, Jeong-Beom
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.974-981
    • /
    • 2007
  • Seoul Metro has operated the air cooling equipment established in a machine room of a station building to improve our services focused on our customers who use Seoul Metro during the summer season. However, a new set of problems has arisen with the cooling tower to support a heat exchange of cooling water. One of them is loss of efficiency in the air conditioner. The leading cause of this problem is that we use an underground type of the cooling tower. As the machine room of a station building is located in the underground of inner city because of the nature of the subway, it is difficult to establish the cooling tower on the ground. The underground structure of the No. $1{\sim}4$ subway line is unsuitable for the location requirements of the underground type of the one because it has a limited space to set up the air cooling equipment, for example, the cooling tower and a ventilating opening. As a result of such an unfavorable condition, the cooling tower doesn't work efficiently and the warmth of cooling water because of insufficiency of a heat exchange and a refrigerator's technical obstacle such as a high-temperature and a high-pressure has arisen. Accordingly, the efficiency of the air conditioning is getting lower and lower. Another problem is too wasteful with water. Each station uses the water over 30 tons every day with waterworks to replenish the cooling tower such as a evaporation, a scattering and a distribution of water. Nevertheless, the more an air conditioner increase, the more the use of water supply increase. For this reason, we can't help wasting an enormous amount of water and discharging the congelation of a low temperature(about $15^{\circ}C$) occurred in a heat exchanger inside an air conditioner. The purpose of this study is to analyze the utility of congealing water to improve efficiency of the air cooling equipment and save energy as a supplementary water for the cooling tower.

  • PDF

Risk Assessment with the Development of CAES (Compressed Air Energy Storage) Underground Storage Cavern (CAES(Compresses Air Energy Storage) 지하 저장 공동 개발에 따른 리스크 사정)

  • Yoon, Yong-Kyun;Seo, Saem-Mul;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.23 no.4
    • /
    • pp.319-325
    • /
    • 2013
  • The objective of this study is to assess risks which might occur in connection with the storage of the highly compressed air in underground opening. Risk factors were selected throughout literature survey and analysis for the characteristic of CAES. Large risk factors were categorized in three components; planning and design phase, construction phase, and operation & maintenance phases. Large category was composed of 8 medium risk groups and 24 sub-risks. AHP technique was applied in order to analyze the questionnaires answered by experts and high-risk factors were selected by evaluating the relative importance of risks. AHP analysis showed that the operation & maintenance phases are the highest risk group among three components of large category and the highest risk group of eight medium risk groups is risk associated with the quality and safety. Risk having the highest risk level in 24 sub-risks is evaluated to be a failure of tightness security of inner containment storing compressed air.

Analysis for the Crack Characteristics of Rock and Concrete using Strain and Elastic Wave (변형률과 탄성파를 이용한 암석 및 콘크리트 균열특성분석)

  • Choi, Young Chul;Kim, Jin Seop;Park, Tae Jin;Kim, Geon Young
    • Tunnel and Underground Space
    • /
    • v.27 no.5
    • /
    • pp.253-262
    • /
    • 2017
  • The purpose of this paper is to analyze the crack characteristics by performing the compression test of the rock and concrete specimens. The experiments are carried out by using strain sensors which can measure length change and the AE sensor which can detect the elastic wave from the crack. The crack volumetric strain calculated from measured strain is shown in different shape on the rock and the concrete specimens. This is because the specimens have a different degree of brittleness. However, the crack volumetric strain associated with the fracture and damage was similar to accumulated AE energy of the two specimens. This means that the AE sensor can assess damage in real time without damaging the structure.

A Study on the Roughness Measurement for Joints in Rock Mass Using LIDAR (LIDAR를 이용한 암반 절리면의 거칠기 측정에 관한 연구)

  • Lee, Sudeuk;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.27 no.1
    • /
    • pp.58-68
    • /
    • 2017
  • According to the development of optical technology, the capacity of LIDAR equipments has been greatly improved to get rock mass characteristics precisely and accurately enough and it has been lightened and popularized so that it can be easily used in the field. In this study, we examined the applicability of roughness measurement for joints in a rock slope using LIDAR technique. A triangular irregular network was constructed using LIDAR and a patch, which is a plane structure of discontinuity on rock mass measured from LIDAR scanning, was extracted to estimate the roughness of the rock slope. Four different kinds of roughness parameters were analyzed to find out their correlation with JRC for various point intervals. Among them, $R_s$ parameter was used to measure the roughness of a patch. Regression analysis between four roughness parameters and JRC with respect to point interval was performed. All the roughness parameters decreased with the increase of point interval. In addition, the parameter value showed greater decrease for rougher surfaces. A method of roughness measurement using $R_s$ parameter on rock slope discontinuities was suggested which showed slight overestimation of the real roughness value.

Estimating Potential Impact of Bike Lane Implementation (Case study of Seoul Metropolitan City) (자전거전용차로 설치에 따른 기대효과 추정 (서울시 사례를 중심으로))

  • Sin, Hui-Cheol;Hwang, Gi-Yeon;Jo, Yong-Hak;Jeong, Seong-Yeop
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.4
    • /
    • pp.97-106
    • /
    • 2010
  • Environmental issues resulting from climate change and energy crises have become global issues, and cycling has gained greater popularity for sustainable transportation. Though many cities are trying to build bicycle roads, it is not easy to implement bicycle roads because there is little available space for bicycle facilities. Therefore, road diets have become more popular in Korea. However, there has been no intensive research to date of their impacts. The purpose of this research is to evaluate the effects of road diets and construction of bike lanes. Every benefit, including energy benefit, environmental benefit, and health benefit is considered, while only time savings benefit has been considered in previous studies. The benefit analysis for the Seoul metropolitan area as a case study shows that road diets have a (1) time saving benefit for only five percent of the mode share and (2) enough total benefit even if bicycle mode share is less than two percent.

An Analysis of the Rhythms of the Chapel at Ronchamp through Henri Lefebvre's 'Rhythmanalysis' (앙리 르페브르의 '리듬분석'을 통한 롱샹 성당의 리듬분석)

  • Kim, Young-Hee
    • Korean Institute of Interior Design Journal
    • /
    • v.24 no.2
    • /
    • pp.78-87
    • /
    • 2015
  • This study aims to grasp the vital rhythm of the Chapel at Ronchamp by analyzing its rhythm through Henri Lefebvre's 'rhythmanalysis' in an effort to show the possibility of approaching the presence of this chapel. For the purpose of this study, Lefebvre's thought of rhythmanalysis was first contemplated, and a case study analysis was conducted on the concept and presence of the chapel in the design process. On this basis, examples of the chapel's rhythms were analyzed through Lefebvre's dialectical analysis of the triad of time(melody), space(harmony) and energy(rhythm). The results of analysis are as follows: First, the concept intended by Le Corbusier in the process of designing the Chapel at Ronchamp is expressed as the acoustic form, the modulor corresponding to the scale of the music, the light and shadow of counterpoint, and the opposite composition of musical changes. Consequently, the concept-mediated presence of this chapel is the presence of music. Second, at the Chapel at Ronchamp, a Lefebvre's rhythmanalyst experiences, or rather senses, two vital rhythms of an antithetical unity (i.e., acoustic curved rhythm and modulor-generated linear rhythm), with reference to his/her own rhythms. These rhythms are a dialectical union of spatiality of melodies temporalized through continuity, (i.e., acoustic curved form and modulor-generated linear form), and temporality of harmonies spatialized through simultaneity (i.e., light and shadow, materials and color, form of interpenetration, and stairs or windows/doors). These rhythms carry the measures generated by music-specific repetitions and differences in movements(energy). Consequently, the rhythm-mediated presence of this chapel is also the presence of music. In conclusion, the Chapel of Ronchamp indicates that an approach toward its presence can be realized through vital rhythms derived from Lefebvre's 'rhythmanalysis'. This study holds significance as an analysis of spatial rhythm and presence, employing a philosophical thought.

Experimental Study on the Gasification Characteristics of Liquefied Gas Vaporizer with Various Shape (다양한 형상을 갖는 액화가스 기화기의 기화특성에 관한 실험적 연구)

  • Lee Yong-Hun;Lee Sang-Chul;Jeong Hyo-Min;Chung Han-Shik
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • This paper was studied for optimum design of the used vaporizer at a satellite station. Generally, the cold air is created by temperature drop on the vaporizer surface. In addition, the frost creates ice deposit layer, therefore, heat transfer on vaporizer decreases into the adiabatic condition. By this reason, recent vaporizer system is installed as parallel type, and it takes three times of vaporizer capacity. But this vaporizer system requires much installation costs and restricted by some space. It is very important to solve this problem. This study paper is regarding $LN_2$ vaporizer where the utilization increases recently. There are three variable conditions which are used in this study research. First, fin lengths of 4000mm, 6000mm, 8000mm and 0, 4, 8 fin types were applied rut each vaporizer. Second, we applied four season condition which consist of humidity, temperature and air velocity to the experimental environment. Finally, pressure was applied to get flow rate during experiment. This paper objective is to propose vaporizer type and length data for best performance of vaporizer through experiment.

  • PDF

Assessment of statistical sampling methods and approximation models applied to aeroacoustic and vibroacoustic problems

  • Biedermann, Till M.;Reich, Marius;Kameier, Frank;Adam, Mario;Paschereit, C.O.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.6
    • /
    • pp.529-550
    • /
    • 2019
  • The effect of multiple process parameters on a set of continuous response variables is, especially in experimental designs, difficult and intricate to determine. Due to the complexity in aeroacoustic and vibroacoustic studies, the often-performed simple one-factor-at-a-time method turns out to be the least effective approach. In contrast, the statistical Design of Experiments is a technique used with the objective to maximize the obtained information while keeping the experimental effort at a minimum. The presented work aims at giving insights on Design of Experiments applied to aeroacoustic and vibroacoustic problems while comparing different experimental designs and approximation models. For this purpose, an experimental rig of a ducted low-pressure fan is developed that allows gathering data of both, aerodynamic and aeroacoustic nature while analysing three independent process parameters. The experimental designs used to sample the design space are a Central Composite design and a Box-Behnken design, both used to model a response surface regression, and Latin Hypercube sampling to model an Artificial Neural network. The results indicate that Latin Hypercube sampling extracts information that is more diverse and, in combination with an Artificial Neural network, outperforms the quadratic response surface regressions. It is shown that the Latin Hypercube sampling, initially developed for computer-aided experiments, can also be used as an experimental design. To further increase the benefit of the presented approach, spectral information of every experimental test point is extracted and Artificial Neural networks are chosen for modelling the spectral information since they show to be the most universal approximators.