DOI QR코드

DOI QR Code

Risk Assessment with the Development of CAES (Compressed Air Energy Storage) Underground Storage Cavern

CAES(Compresses Air Energy Storage) 지하 저장 공동 개발에 따른 리스크 사정

  • 윤용균 (세명대학교 소방방재학과) ;
  • 서샘물 (세명대학교 대학원 소방방재공학과) ;
  • 최병희 (한국지질자원연구원 지구환경연구본부)
  • Received : 2013.08.20
  • Accepted : 2013.08.28
  • Published : 2013.08.31

Abstract

The objective of this study is to assess risks which might occur in connection with the storage of the highly compressed air in underground opening. Risk factors were selected throughout literature survey and analysis for the characteristic of CAES. Large risk factors were categorized in three components; planning and design phase, construction phase, and operation & maintenance phases. Large category was composed of 8 medium risk groups and 24 sub-risks. AHP technique was applied in order to analyze the questionnaires answered by experts and high-risk factors were selected by evaluating the relative importance of risks. AHP analysis showed that the operation & maintenance phases are the highest risk group among three components of large category and the highest risk group of eight medium risk groups is risk associated with the quality and safety. Risk having the highest risk level in 24 sub-risks is evaluated to be a failure of tightness security of inner containment storing compressed air.

본 연구의 목적은 지하공동 내에 고압 압축공기를 저장하는 경우 발생할 수 있는 리스크를 평가하는 것이다. 문헌 조사와 CAES의 특성에 대한 연구를 통해 CAES 지하 저장 공동 개발과 관련된 리스크 요인을 선정하였다. 대분류 리스크 요인으로 기획 설계단계, 시공단계, 운영 유지관리단계의 3개를 고려하였으며, 중분류 리스크 요인으로 8개를, 소분류 리스크 요인으로 총 24개의 리스크 인자들을 선정하였다. 전문가 설문을 통해 얻어진 자료를 분석하기 위하여 AHP 기법을 적용하였으며 리스크 상호 간 상대적 중요도를 평가하였다. 해석 결과 대분류에서는 운영 유지관리단계 리스크, 중분류에서는 품질 안전 관련 리스크, 소분류에서는 압축공기 저장용 내조시스템의 기밀성 확보 실패가 가장 큰 리스크로 평가되었다.

Keywords

References

  1. Bauer, S.J., 2008, Underground aspects of underground compressed air energy storage(CAES), Compressed Air Energy Storage(CAES) scoping workshop, 2008. 10. 21-22, Columbia University, pp. 224-246.
  2. Creative Decisions Foundation, 2013, www.superdecisions. com.
  3. EMA, 2003, Critical infrastructure emergency risk management and assurance, EMA, 29p.
  4. Engemann, K.J. and D.M. Henderson, 2012, Business continuity and risk management, Rothstein Associates Inc., pp. 33-58.
  5. Fthenakis, V., 2008, Enabling large scales of PV and wind, Compressed Air Energy Storage(CAES) scoping workshop, 2008. 10. 21-22, Columbia University, pp. 38-58.
  6. Harker, P.T., 1989, The Analytic Hierarchy Process : Applications and Studies, Springer-Verlag, pp. 3-36.
  7. Ko, T.Y., 2012, New concept of underground space utilization: Compressed Air Energy Storage, Architecture 56(2), pp. 87-90.
  8. Marchese, D., 2008, Norton energy storage: CAES resiliency in uncertain markets, Compressed Air Energy Storage(CAES) scoping workshop, 2008. 10. 21-22, Columbia University, pp. 151-165.
  9. Naver, 2013.08.17, www.naver.com.
  10. Seo, J.W., J.H. Yoon, J.H. Kim and S.H. Jee, 2010, Development of risk analysis structure for large-scale underground construction in urban areas, J. of KGS 26(3), pp. 59-68.
  11. Seo, S.M., 2013, A study on a risk assessment with storage of high-pressure materials in underground opening, M. Eng. Thesis, Semyung University, 86p.
  12. Succar, S., 2011, Compressed air energy storage, Large energy storage systems handbooks(edited by Barnes, F.S. and Levine, J.G.), CRC Press, pp. 111-152.
  13. Ter-Gazarian, A.G., 2011, Energy storage for power systems(2nd Edition), The Institution of Engineering and Technology, pp. 31-34.
  14. Wikipedia, 2013.08.17, ko.wikipedia.or.
  15. Yoon, Y.K., 2011, A study on the risk assessment occurred possibly in a civil project, Explosives & Blasting 29(2), pp. 59-66.
  16. Yoon, Y.K., S.M. Seo and B.H. Choi, 2013, Risk management for CAES underground storage cavern, Proceeding of 2013 KSRM Spring Annual Conference, pp. 89-93.
  17. You, Y.I., M.K. Kim and J.J. Song, 2008, Methodology to quantify rock behavior in shallow rock tunnels by analytic hierarchy process and rock engineering systems, J. of KSRM 18(6), pp. 465-479.