• Title/Summary/Keyword: energy space

Search Result 3,298, Processing Time 0.032 seconds

Development and Performance Evaluation of Real-Time Wear Measurement System of TBM Disc Cutter (TBM 디스크 커터 실시간 마모계측 시스템 개발 및 성능검증)

  • Min-Seok Ju;Min-Sung Park;Jung-Joo Kim;Seung Woo Song;Seung Chul Do;Hoyoung Jeong
    • Tunnel and Underground Space
    • /
    • v.34 no.2
    • /
    • pp.154-168
    • /
    • 2024
  • The Tunnel Boring Machine (TBM) disc cutter is subjected to wear and damage during the rock excavation process, and the worn disc cutter should be replaced on time. The manual inspection by workers is generally required to determine the disc cutter replacement. In this case, the workers are exposed to dangerous environments, and the measurements are sometimes inaccurate. In this study, we developed a technology that measures the disc cutter wear in real time. From a series of laboratory tests, a magnetic sensor was selected as the wear sensor, and the real-time disc cutter measurement system was developed integrating wireless communication modules, power supply and data processing board. In addition, the measurement system was verified in actual TBM excavation circumstances. As a result, it was confirmed that the accuracy and stability of the system.

Development of Eco-Friendly Ag Embedded Peroxo Titanium Complex Solution Based Thin Film and Electrical Behaviors of Res is tive Random Access Memory

  • Won Jin Kim;Jinho Lee;Ryun Na Kim;Donghee Lee;Woo-Byoung Kim
    • Korean Journal of Materials Research
    • /
    • v.34 no.3
    • /
    • pp.152-162
    • /
    • 2024
  • In this study, we introduce a novel TiN/Ag embedded TiO2/FTO resistive random-access memory (RRAM) device. This distinctive device was fabricated using an environmentally sustainable, solution-based thin film manufacturing process. Utilizing the peroxo titanium complex (PTC) method, we successfully incorporated Ag precursors into the device architecture, markedly enhancing its performance. This innovative approach effectively mitigates the random filament formation typically observed in RRAM devices, and leverages the seed effect to guide filament growth. As a result, the device demonstrates switching behavior at substantially reduced voltage and current levels, heralding a new era of low-power RRAM operation. The changes occurring within the insulator depending on Ag contents were confirmed by X-ray photoelectron spectroscopy (XPS) analysis. Additionally, we confirmed the correlation between Ag and oxygen vacancies (Vo). The current-voltage (I-V) curves obtained suggest that as the Ag content increases there is a change in the operating mechanism, from the space charge limited conduction (SCLC) model to ionic conduction mechanism. We propose a new filament model based on changes in filament configuration and the change in conduction mechanisms. Further, we propose a novel filament model that encapsulates this shift in conduction behavior. This model illustrates how introducing Ag alters the filament configuration within the device, leading to a more efficient and controlled resistive switching process.

Experiments for Efficiency of a Wireless Communication in a Buffer Material and Conceptual Design of THM Integrated Sensor System (완충재 내 무선 통신 효율 실험 및 THM 통합 센서 시스템 개념 설계)

  • Chang-Ho Hong;Jiwook Choi;Jin-Seop Kim;Sinhang Kang
    • Tunnel and Underground Space
    • /
    • v.34 no.4
    • /
    • pp.267-282
    • /
    • 2024
  • This study aims to develop a wireless communication system for long-term monitoring of high-level radioactive waste disposal facilities. Conventional wired sensors can lead to a deterioration in buffer quality and management difficulties due to the use of cables for power supply and data transmission. This study proposes the adoption of a wireless communication system and compares the received signal strengths within bentonite using modules such as WiFi, ZigBee, and LoRa. Increases in dry density of bentonite and distance between transceivers led to reduced received signal strength. Additionally, using the low-frequency band exhibited less signal attenuation. Based on these findings, a conceptual design for a wireless network-based THM integrated sensor system was proposed. Results of this study can be used as foundational data for long-term monitoring of disposal facility.

HYPER SUPRIME-CAMERA SURVEY OF THE AKARI NEP WIDE FIELD

  • Goto, Tomotsugu;Toba, Yoshiki;Utsumi, Yousuke;Oi, Nagisa;Takagi, Toshinobu;Malkan, Matt;Ohayma, Youichi;Murata, Kazumi;Price, Paul;Karouzos, Marios;Matsuhara, Hideo;Nakagawa, Takao;Wada, Takehiko;Serjeant, Steve;Burgarella, Denis;Buat, Veronique;Takada, Masahiro;Miyazaki, Satoshi;Oguri, Masamune;Miyaji, Takamitsu;Oyabu, Shinki;White, Glenn;Takeuchi, Tsutomu;Inami, Hanae;Perason, Chris;Malek, Katarzyna;Marchetti, Lucia;Lee, HyungMoK;Im, Myung;Kim, Seong Jin;Koptelova, Ekaterina;Chao, Dani;Wu, Yi-Han;AKARI NEP Survey team;AKARIAll Sky Survey Team
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.225-230
    • /
    • 2017
  • The extragalactic background suggests half the energy generated by stars was reprocessed into the infrared (IR) by dust. At z~1.3, 90% of star formation is obscured by dust. To fully understand the cosmic star formation history, it is critical to investigate infrared emission. AKARI has made deep mid-IR observation using its continuous 9-band filters in the NEP field ($5.4deg^2$), using ~10% of the entire pointed observations available throughout its lifetime. However, there remain 11,000 AKARI infrared sources undetected with the previous CFHT/Megacam imaging (r ~25.9ABmag). Redshift and IR luminosity of these sources are unknown. These sources may contribute significantly to the cosmic star-formation rate density (CSFRD). For example, if they all lie at 1< z <2, the CSFRD will be twice as high at the epoch. We are carrying out deep imaging of the NEP field in 5 broad bands (g, r, i, z, and y) using Hyper Suprime-Camera (HSC), which has 1.5 deg field of view in diameter on Subaru 8m telescope. This will provide photometric redshift information, and thereby IR luminosity for the previously-undetected 11,000 faint AKARI IR sources. Combined with AKARI's mid-IR AGN/SF diagnosis, and accurate midIR luminosity measurement, this will allow a complete census of cosmic star-formation/AGN accretion history obscured by dust.

Radiological Safety Perception Change after Spatial Dose Measurement of Radiology Department Students (방사선학과 학생들의 공간선량 측정 경험이 방사선 안전 인식에 미치는 영향)

  • Moon, Jae Mi;Park, Sang Tae;Yu, Ji Hyun
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.3
    • /
    • pp.174-180
    • /
    • 2015
  • There are currently many research papers on the knowledge, perceptions and actions of radiation-related staff, but hardly any papers on radiation major students in college who are to be staff members of radiation related jobs in the future. It is of course important to understand the perceptions of staff working on the lines and change their knowledge and perceptions, but in the long term it seems more efficient to understand those who are in the stage of being educated to be staff members-their knowledge and perception of radiation so that ultimately they can attain the right kind of understanding. Therefore the aim of this study is to grasp the pre-radiation staff's basic concept of radiation and space dose, their understanding of radiation safety based on this, and whether there is a change in their perception before and after the space dose measurement experiment; in the end this is to see if the space dose measurement experiment is effective in changing perception on radiation safety. This study took as its subject 64 students majoring radiation in college, I.e. pre-radiation staff members, and gauged their basic conceptualization of radiation, understanding of space dose, and understanding of radiation safety; in the X-ray room within the department the students were asked to measure space dose for themselves, so as to see whether there was a change in their understanding of radiation safety before and after the experiment, according to their understanding of the basic concept of radiation and of space dose. As a result of the space dose measurement experiment, students' increased basic knowledge of concept of radiation and understanding of the dangers of space dose were noteworthy, and accordingly their understanding of radiation safety became stricter and more conservative. In spite of this, their work ethic stayed in the lead of their understanding of radiation safety; this implies the need of a more departmentalized safety education program. Therefore instead of safety education that simply uses visual-audial material in a kind of lecture, I suggest here that there be a more experiential safety education program that enables learners to try out space dose measurement experiments for themselves, a work ethic education that aims for a conventional point of view towards radiation safety as well as a stern attitude.

A Study on the Development of Electrolysis System with Vertically Circulating Mercury Capillary Bundle Electrode and its Characteristics (수직형 순환식 수은 모세관 다발체 전극 전해계의 개발과 그 특성 연구)

  • Kim, Kwang-Wook;Lee, Eil-Hee;Shin, Young-Joon;Yoo, Jae-Hyung;Park, Hyun-Soo
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.228-236
    • /
    • 1996
  • An electrolysis system with a vertically circulating mercury capillary bundle electrode was developed with a very large electrode area in a minimum space. This system was operated by forcedly feeding mercury and aqueous solution containing metal ion into a fiber bundle packed densely within a small porous glass tube. In order to test the characteristics and stability of the electrolysis system, the reduction voltammograms of uranyl and ferric ions were measured with changes of the mercury flow rate and the aqueous flow rate. The aqueous flow rate had a large effect on the electrochemical reaction of metal ion occurring at the interface between the mercury and the aqueous solution and had to be regulated as an appropriate value to have a good limiting current shape. The limiting current was linearly proportional to the aqueous flow rate, and complete reductions of uranyl and ferric ions were rapidly and continuously accomplished at the potential showing limiting current. With a mercury flow rate high enough to keep a capillary continuum of mercury in the fiber bundle, the mercury flow rate had almost no effect on the electrochemical reaction. This system was confirmed to be effective and stable enough to control rapidly and continuously the oxidation state of metal ions fed into the system under an appropriate aqueous flow rate.

  • PDF

Geological Values of Seonangbawi Area as A Geological Field Course Site (야외지질학습장으로써 서낭바위 일대의 지질학적 가치)

  • Kil, Youngwoo;Choi, Don Won;Cong, Nguyen The;Jung, Woochul;Jo, Yunsoo;Jung, Yeojin
    • Journal of the Korean earth science society
    • /
    • v.39 no.2
    • /
    • pp.164-177
    • /
    • 2018
  • Even though various geological attractions are distributed domestically, the geological attractions are rarely utilized as field course site. The purpose of this study is to make Seonangbawi area as the field course site after geological investigations are carried out in detail. Seonangbawi is located about 1km southeast from Songjiho beach in Gangwon-do. Seonangbawi area is simply composed of Cretaceous Seokcho granite with the overlay of Quaternary alluvium. Geological field course in the Seonangbawi area will be useful to the student and citizen for developing the knowledge of geological phenomena, such as the formation of granite and minerals, and weathering process. In addition, the student and citizen can develop the knowledge of the geological structures, such as joint (N50E/80NW, N40W/84SW), fault (N42W/83SW), foliation (N32E/54SE), and dyke (N35E/40SE, N26W/63SW), and geographical features, such as tor, taforni, groove, and gnamma in the field. Accordingly, the Seonangbawi area is the best place to learn various geological and geographical phenomena and to discuss the origin of Seonangbawi with limited space.

Current Status of the Spent Filter Waste and Consideration of Its Treatment Method in KAERI (KAERI 저장 폐필터의 현황과 처리방법에 관한 고찰)

  • Ji, Young-Yong;Hong, Dae-Seok;Kang, Il-Sik;Shon, Jong-Sik
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.3
    • /
    • pp.257-265
    • /
    • 2007
  • Spent filter wastes of about 1,000 units (200 L) have been stored in the waste storage facility of the Korea Atomic Energy Research Institute since its operation. At the moment, to secure space in a waste storage facility as well as to efficiently manage spent filter wastes, it is necessary to conduct a compaction treatment of these spent filters, and finally, to repack the compacted spent filters into a 200 liter drum. To do that, the spent filter wastes were first classified according to their generation facilities, their generation date and their surface dose rate by investigating the inventory of the spent filters. In order to repack a compacted spent filter in a 200 liter drum, it is first necessary to conduct a radionuclide assessment of a spent filter before compacting it. Therefore, after taking a representative sample from a spent filter without a dismantlement, the nuclide analysis for it will be conducted. And then, after putting a spent filter into a regular drum by conducting the columnar shaping of the hexahedral form of a spent filter, the compaction treatment of the shaped spent filter will be conducted by vertically compacting it.

  • PDF

Evaluation of Investment Value of Renewable Energy and Decision Making for Market Entry Using the Idle Space of Public Enterprises (공기업 유휴공간을 활용한 신재생에너지 투자사업에 대한 실물옵션기반 의사결정방안)

  • Na, Seoung Beom;Jang, Woosik;Kim, Kyeongseok;Kim, Byungil;Lee, Harry;Lee, Changgeun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.168-175
    • /
    • 2020
  • Recently, there has been an increasing need to expand the supply of renewable energy as a solution to greenhouse gas emissions. Therefore, as a measure to promote domestic renewable energy investment and gradual expansion, this study analyzed the investment value of renewable energy projects utilizing the unoccupied spaces of public enterprise's facilities and presented a strategic decision-making framework to support efficient national land development and government measures. The NPV was estimated to be 286 million won if the expansion of the facility was not considered, but it is reasonable to postpone the expansion decision because the value of -130 million won was calculated if the expansion was considered. On the other hand, the real-option value was estimated to be 444 million won, taking SMP uncertainty, expansion, and abandonment options into account, and an additional value of 288 million won was calculated from an analysis of the expansion project using the existing NPV analysis.

Characterization of Cement Waste Form for Final Disposal of Decommissioned Concrete Waste (해체 콘크리트 폐기물 최종처분을 위한 시멘트 고화체 특성 평가)

  • Lee, Yoon Ji;Hwang, Doo Seong;Lee, Ki Won;Jeong, Gyeong Hwan;Moon, Jei Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.4
    • /
    • pp.271-280
    • /
    • 2013
  • Since the decommissioning of nuclear plants and facilities, large quantities of slightly contaminated concrete waste have been generated. In Korea, the decontamination and decommissioning of the KRR-1, 2 at the KAERI have been under way. And concrete waste was generated about 800 drums of 200 L. The conditioning of concrete waste is needed for final disposal. The concrete waste is conditioned as follows: mortar using coarse and fine aggregates is filled void space after concrete rubble pre-placement into 200 L drum. Thus, this research has developed an optimizing mixing ratio of concrete waste, water, and cement and has evaluated characteristics of a cement waste form to meet the requirements specified in disposal site specific waste acceptance criteria. The results obtained from compressive strength test, leaching test, thermal cycling test of cement waste forms conclude that the concrete waste, water, and cement have been suggested to have 75:15:10wt% as the optimized mixing ratio. Also, the compressive strength of cement waste form was satisfied that including fine powder up to maximum 40wt% in concrete debris wastes about 75%. As a result of scale-up test, the mixture of concrete waste, water, and cement is 75:10:15wt% meet the satisfied compressive strength because the free water increased with and increased in particle size.