• Title/Summary/Keyword: energy space

Search Result 3,298, Processing Time 0.03 seconds

Multiphase turbulence mechanisms identification from consistent analysis of direct numerical simulation data

  • Magolan, Ben;Baglietto, Emilio;Brown, Cameron;Bolotnov, Igor A.;Tryggvason, Gretar;Lu, Jiacai
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1318-1325
    • /
    • 2017
  • Direct Numerical Simulation (DNS) serves as an irreplaceable tool to probe the complexities of multiphase flow and identify turbulent mechanisms that elude conventional experimental measurement techniques. The insights unlocked via its careful analysis can be used to guide the formulation and development of turbulence models used in multiphase computational fluid dynamics simulations of nuclear reactor applications. Here, we perform statistical analyses of DNS bubbly flow data generated by Bolotnov ($Re_{\tau}=400$) and LueTryggvason ($Re_{\tau}=150$), examining single-point statistics of mean and turbulent liquid properties, turbulent kinetic energy budgets, and two-point correlations in space and time. Deformability of the bubble interface is shown to have a dramatic impact on the liquid turbulent stresses and energy budgets. A reduction in temporal and spatial correlations for the streamwise turbulent stress (uu) is also observed at wall-normal distances of $y^+=15$, $y/{\delta}=0.5$, and $y/{\delta}=1.0$. These observations motivate the need for adaptation of length and time scales for bubble-induced turbulence models and serve as guidelines for future analyses of DNS bubbly flow data.

A Numerical Study on the Thermal Characteristics of Double Skin Vacuum Tubes with Coaxial Fluid Conduit (등축 유로 장착 이중 태양열 진공관의 열적 특성에 관한 수치해석적 연구)

  • Hyun, Jun-Ho;Park, Youn-Cheol;Chun, Won-Gee;Lee, Sang-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.567-570
    • /
    • 2006
  • A numerical study has been carried out for a solar water heater which consists of double skin solar vacuum tubes. Water is heated as it flows through the coaxial fluid conduit inserted in each tube. The space between the exterior of the fluid conduit and the glass tube is tilled with antifreeze solution. This is to facilitate heat transfer from the solar heated absorber surface to water and to prevent the functional problems due to freezing in frigid weather conditions. A one-dimensional steady state model is fully described which will be used to develop three-dimensional model using STAR-CD. These models could be used efficiently in designing double skin solar collector tubes with different geometrical parameters other than those considered in the present analysis. Results show a good agreement when compared with other experimental data demonstrating the reliability of the one-dimensional model employed.

  • PDF

Numerical Optimization of Offshore Wind Turbine Blade for Domestic Use using Improvement of the Design Space Feasibility (설계공간 타당성 향상을 통한 한국형 해상풍력터빈 블래이드 최적형상설계 연구)

  • Lee, Ki-Hak;Joo, Wan-Don;Hong, Sang-Won;Kim, Kyu-Hong;Lee, Kyung-Tae;Lee, Dong-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.281-286
    • /
    • 2006
  • 본 연구의 목적은 차세대 대체에너지로 각광받는 풍력발전 중에서 육상발전보다 여러 가지 이점이 있는 한국형 해상풍력터빈 블레이드의 최적형상설계를 위한 알고리즘을 구현하는 것이다. 블레이드 단면 익형의 양력과 항력 분포는 XFOIL을 이용하여 예측하였다. 첫 번째 수준의 설계변수인 각각의 블레이드 지름과 축 회전수에서 익형의 공력변수들과 최소에너지손실 조건을 이용하여 두 번째 설계변수인 각 블레이드 단면에서의 시위길이와 피치각 분포를 최적화하였다. 그리고 성능결과를 바탕으로 반응면을 구성하고, 확률적 방법을 이용하여 타당성 있는 설계공간까지 첫 번째 설계변수를 이동시키고 구배최적화 기법을 통해 각각의 제약함수를 만족하면서 목적함수를 죄대로 하는 최적블레이드 형상을 구현하였다. 설계된 최적형상에 대해 탈설계점 해석을 수행하여 성능을 구하였다.

  • PDF

In-Vehicle Auto temperature control System by CAN Network (CAN 통신을 이용한 차량 내 자동 온도조절 시스템)

  • Kim, Jang-ju;Jang, Jong-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.90-93
    • /
    • 2009
  • Recently, CAN(Controller Area Network) being used in vehicle network system is suitable Network Protocol for smart vehicles with a future that need many ECUs, and it guarantees stability and reliability. It is revealed that being equipped many ECU could reduce the increasing of energy consumption and energy cost from the increasing of Wiring Harness's space and weight. In this paper, future smart vehicle control Air conditioner and heater for convenient and comfortable driving as using CAN protocol and implement auto control system According to driver's requirement using temperature in the vehicle.

  • PDF

A Study on Trend Analysis of Patents Application in 6T Area (6T 분야 특허ㆍ실용신안 출원동향 분석에 관한 연구)

  • Nam In-Suk;Kim Woo-Soon;Lee Jun-Su;Jeong Byung-Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.4
    • /
    • pp.49-58
    • /
    • 2004
  • The R&D investment of Korean government has been concentrated into 6T areas-IT(Information Technology), BT(Bio-Technology), NT(Nano Technology), ET(Environment & Energy Technology), ST(Space Technology) and CT(Culture & Contents Technology) - for a couple of years. By this selection and concentration strategy, patent applications are on an increasing trend in these areas. This paper examined the trends of patent application in 6T areas. To do this, this paper classified each technology area into the detail technology area with the valid number of patent applications. According to the result, the analysis data will be used to make R&D budget appropriation of the government.

A Guideline on Development of LED Convergence Intrinsic Safety Luminaire for Marine Plants & Ships and It's Standard (선박 해양용 본질안전 LED 방폭 조명 표준화를 위한 가이드 개발 연구)

  • Lee, Seung-Hyeok;Kim, Tae-Hun
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.4
    • /
    • pp.25-34
    • /
    • 2017
  • Offshore plants should be managed at a high level of safety condition. Because the offshore plant has cramped space and has difficult access when a fire occurred, a fire can be critical to the plants. LED lighting can reduce the risk of fire by its lower energy consume suitable to intrinsic safety and lower heat radiation that can reduce the possibility of ignition. Also LED has a long lifetime. Though LED luminaire has various advantages for offshore plants, an international standard for the luminaire has not provided because it is new technology. Because there is no international and domestic standard specially provided for the LED luminaire, a guideline is required for developing the LED light and for the future establishment of an international standard. This study was conducted to develop the guideline for LED luminaire for offshore plants. Firstly, relevant standards were analyzed for the guideline. Then we found that there are editorial differences between international standards and domestic standards. So the guideline was developed based on international version and the differences between the domestic and international standard were provided to let Korean developers recognize the differences.

Recent research towards integrated deterministic-probabilistic safety assessment in Korea

  • Heo, Gyunyoung;Baek, Sejin;Kwon, Dohun;Kim, Hyeonmin;Park, Jinkyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3465-3473
    • /
    • 2021
  • For a long time, research into integrated deterministic-probabilistic safety assessment has been continuously conducted to point out and overcome the limitations of classical ET (event tree)/FT (fault tree) based PSA (probabilistic safety assessment). The current paper also attempts to assert the reason why a technical transformation from classical PSA is necessary with a re-interpretation of the categories of risk. In this study, residual risk was classified into interpolating- and extrapolating-censored categories, which represent risks that are difficult to identify through an interpolation or extrapolation of representative scenarios due to potential nonlinearity between hardware and human behaviors intertwined in time and space. The authors hypothesize that such risk can be dealt with only if the classical ETs/FTs are freely relocated, entailing large-scale computation associated with physical models. The functional elements that are favorable to find residual risk were inferred from previous studies. The authors then introduce their under-development enabling techniques, namely DICE (Dynamic Integrated Consequence Evaluation) and DeBATE (Deep learning-Based Accident Trend Estimation). This work can be considered as a preliminary initiative to find the bridging points between deterministic and probabilistic assessments on the pillars of big data technology.

Performance Analysis on a Heat Pump System using Waste Heat (폐열이용 열펌프시스템의 성능에 관한 연구)

  • Park, Youn Cheol;Song, Lei;Ko, Gwang Soo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.4
    • /
    • pp.53-60
    • /
    • 2018
  • This study was conducted for analysis of a heat pump system using waste heat in an enclosed space such as a green house. The model was developed with mathematical equations in literature and Engineering Equation Solver (EES) was used to get the solution of the developed equations. The simulation results have 5% of reliability comparing the results with actual test data of heat pump system's dynamic operation. The operating performance of the system was calculated with variation of working fluid temperature in the thermal storage tank such as $25^{\circ}C$, $35^{\circ}C$, $45^{\circ}C$ and $55^{\circ}C$. As a result, the system's the highest total heating capacity shows 280 kWh and the storage tank's operating time decreased as the starting storage tank's temperature was high.

Optimization of a horizontal axis marine current turbine via surrogate models

  • Thandayutham, Karthikeyan;Avital, E.J.;Venkatesan, Nithya;Samad, Abdus
    • Ocean Systems Engineering
    • /
    • v.9 no.2
    • /
    • pp.111-133
    • /
    • 2019
  • Flow through a scaled horizontal axis marine current turbine was numerically simulated after validation and the turbine design was optimized. The computational fluid dynamics (CFD) code Ansys-CFX 16.1 for numerical modeling, an in-house blade element momentum (BEM) code for analytical modeling and an in-house surrogate-based optimization (SBO) code were used to find an optimal turbine design. The blade-pitch angle (${\theta}$) and the number of rotor blades (NR) were taken as design variables. A single objective optimization approach was utilized in the present work. The defined objective function was the turbine's power coefficient ($C_P$). A $3{\times}3$ full-factorial sampling technique was used to define the sample space. This sampling technique gave different turbine designs, which were further evaluated for the objective function by solving the Reynolds-Averaged Navier-Stokes equations (RANS). Finally, the SBO technique with search algorithm produced an optimal design. It is found that the optimal design has improved the objective function by 26.5%. This article presents the solution approach, analysis of the turbine flow field and the predictability of various surrogate based techniques.

Parametric analyses for the design of a closed-loop passive containment cooling system

  • Bang, Jungjin;Hwang, Ji-Hwan;Kim, Han Gon;Jerng, Dong-Wook
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1134-1145
    • /
    • 2021
  • A design parameter study is presented for the closed-loop type passive containment cooling system (PCCS) which is equipped with two heat exchangers: one installed at the inside of the containment and the other submerged in the water pool at the outside of the containment. A GOTHIC code model for PCCS performance analyses was set up and the design parameters such as the heat exchanger sizes, locations, and water pool tank volumes were analyzed to investigate the feasibility of installing this type of PCCS in PWRs like OPR-1000 being operated in Korea. We identified the size of the circulation loop and heat exchangers as major design parameters affecting the performance of PCCS. The analyses showed that the heat exchangers in the inside of the containment would be more influential on the heat removal capability of PCCS than that installed in the water pool at the outside of the containment. Hence, it was recommended to down-size the heat exchangers in the water pool to optimize PCCS without compromising its performance. Based on the parametric study, it was demonstrated that a closed-loop type PCCS could be designed sufficiently compact for installation in the available space within the containment of PWRs like OPR-1000.