• Title/Summary/Keyword: energy space

Search Result 3,298, Processing Time 0.026 seconds

Nonlinear spectral design analysis of a structure for hybrid self-centring device enabled structures

  • Golzar, Farzin G.;Rodgers, Geoffrey W.;Chase, J. Geoffrey
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.701-709
    • /
    • 2017
  • Seismic dissipation devices can play a crucial role in mitigating earthquake damages, loss of life and post-event repair and downtime costs. This research investigates the use of ring springs with high-force-to-volume (HF2V) dissipaters to create damage-free, recentring connections and structures. HF2V devices are passive rate-dependent extrusion-based devices with high energy absorption characteristics. Ring springs are passive energy dissipation devices with high self-centring capability to reduce the residual displacements. Dynamic behaviour of a system with nonlinear structural stiffness and supplemental hybrid damping via HF2V devices and ring spring dampers is used to investigate the design space and potential. HF2V devices are modelled with design forces equal to 5% and 10% of seismic weight and ring springs are modelled with loading stiffness values of 20% and 40% of initial structural stiffness and respective unloading stiffness of 7% and 14% of structural stiffness (equivalent to 35% of their loading stiffness). Using a suite of 20 design level earthquake ground motions, nonlinear response spectra for 8 different configurations are generated. Results show up to 50% reduction in peak displacements and greater than 80% reduction in residual displacements of augmented structure compared to the baseline structure. These gains come at a cost of a significant rise in the base shear values up to 200% mainly as a result of the force contributed by the supplemental devices.

Voltage Source Equipment for the Grid Fault Testing and Analysis of Total Harmonic Distortion According to PWM Methods

  • Gwon, Jin-Su;Kim, Chun-Sung;Kang, Dae-Wook;Park, Jung-Woo;Kim, Sungshin
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1081-1092
    • /
    • 2014
  • Renewable energy is being spotlighted as the electric power generating source for the next generation. Due to an increase in renewable energy systems in the grid system, their impact on the grid has become non-negligible. Thus, many countries in the world, including Europe, present their own grid codes for grid power conversion devices. In order to experiment with these grid codes, grid fault test equipment is required. This paper proposes both equipment and a control method, which are constructed with a 7-level cascaded H-bridge converter, that are capable of generating various grid faults. In addition, the Pulse Width Modulation (PWM) method for multilevel converters is compared and analyzed. The proposed structure, the control method, and the PWM method are verified through simulation and experimental results.

A Study on the Method and Planning Characteristics of Environment-friendly Skyscraper - Focused on the Analysis of Environment-friendly Skyscraper in other countries - (친환경 초고층 건축 계획 특성 및 기법에 관한 연구 - 해외 친환경 초고층 건축 분석을 중심으로 -)

  • Kim, Ja Kyung
    • KIEAE Journal
    • /
    • v.8 no.3
    • /
    • pp.27-36
    • /
    • 2008
  • Urban architecture density is getting higher, and this trend is expected to continue in the future. Therefore, skyscrapers are being brought into relief as future alternative architecture beyond symbolic meaning in the aspect of demand and supply of urban space. However, skyscrapers which were newly built have many problems such as consumption of enormous amounts of energy, destruction of natural environment, and traffic jam. For this reason, environment-friendly skyscrapers based on the concept such as Green Building and Green Skyscraper started to be built around the world. However, plans or evaluation standards, which take account of the environment-friendly aspect of skyscrapers, leave much to be desired. And especially it is hard to find environment-friendly skyscrapers. Therefore, this study aims to establish the concept of environment-friendly skyscrapers that has not properly been defined, and to find realistic planning methods and practical alternatives through the analysis of the works that have brilliant ideas about environment-friendly architectural method. From the perspective of architectural planning, we did case analysis focused on site planning, form planning, elevation and floor planning, and tried to give useful ideas for high-rise architectural planning in Korea by finding practical solution focused on the active use of natural energy, saving resources, the reduction of wastes, natural architectural environment design and natural friendly system from the view of environment-friendly technological analysis.

Development and Performance Evaluation of a Sloped Lightshelf Daylighting System (Mock-up model을 이용한 경사형광선반 채광시스템의 개발 및 채광성능평가에 관한 연구)

  • Kim, Jeong-Tai;Kim, Ki-Cheol;Kim, Gon
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.2
    • /
    • pp.39-50
    • /
    • 2004
  • One of the challenge for successful daylighting design might be to capture sunlighting that varies in both intensity and position and to deliver the luminous flux into the inner space as deep as possible. Conventional glazing apertures allow daylight in the outer 3.5m of a perimeter spaces. More advanced daylighting technologies can extend this daylighting depth by reflecting sunlight further from the windows within a deep floor area. For this purpose, this study developed light shelves based on performance evaluation with a mock-up model that constructed recently and measured under real sky condition. All these daylighting devices have a customized geometry developed from the solar path at a given latitude and utilize unique reflecting finishing to maximize the amount of redirection and diffusion of the daylight. This paper tells that the best daylighting penetration typically can be expected from using light-colored sloped external shelves.

A Study of Solar heat removal Impact with Air-Vent Wall (통기벽체적용 건물에서의 일사열 제거효과 검토)

  • Kim, Sang-Jin;Kum, Jong-Soo;Choi, Kwang-Hwan;Shin, Byong-Hwan;Chung, Yong-Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.2
    • /
    • pp.25-31
    • /
    • 2004
  • Ventilation through air vent system in a building envelope is expected to be an effective measure to release solar radiation. An external surface of a wall absorbs solar radiation and transfers it to the air in the cavity. The warmed air gets buoyant force. So when openings are provided at the top and bottom of the cavity, the warmed air is released through the top opening and cooler outside air replaces the space in the cavity. This reduces the further heat transmission into the built environment. This natural ventilation effect seems to be steady and strong. So because of the cavity and the openings, the cooling load reduction by natural ventilation is believed to be considerable.

Overall Heat Transfer Coefficients and Thermal Performance Evaluation through Heat Flux Measurement at Nakseonjae in Changdeokgung (창덕궁 낙선재 외피 열류량 실측을 통한 열관류율 산정 및 열 성능 해석)

  • Kim, Min-Hwi;Kim, Jin-Hyo;Kwon, Oh-Hyun;Han, Wook;Jeong, Jae-Weon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.190-195
    • /
    • 2008
  • The objective of this research is to determine overall heat transfer coefficients (K-value) of exterior wall, floor, and roof of Nakseonjae, a Korean traditional residence via field measurement of transient heat flow and temperature difference across each envelope component. Heat flow sensors and T-type thermocouple were attached on the internal and the external surface of each building component, and real-time measurement data were collected for the three consecutive summer days. The K-values determined in this research showed good agreement with other results from open literature. Peak and annual thermal loads of the traditional residence estimated by a commercial energy simulation program were compared with those for a current apartment house. The traditional house showed lower annual cooling load than that of the current building. It may caused by the fact that the traditional building has less air-tight envelopes and no fenestration passing direct solar radiation into the space.

  • PDF

Performance Comparison of a Welded Plate Heat Exchanger and Shell and Tube Heat Exchanger with Same Heat Transfer Area (동일 전열면적을 갖는 용접식 판형열교환기와 관류형 열교환기의 성능 비교)

  • Ham, Jeonggyun;Kim, Min-Jun;An, Sungkook;Cho, Honghyun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.4
    • /
    • pp.46-54
    • /
    • 2019
  • In this study, the performance of a shell and tube heat exchanger (STHE) and welded plate heat exchanger (WPHE) was measured experimentally. The pass numbers of the STHE was changed by 1, 2 and 4. As a result, the WPHE showed 2.1 times higher heat exchange capacity than that of the STHE. In case of pressure drop, the STHE with 1 and 2 pass number has a lower pressure drop than the WPHE, while the STHE with 4 pass presented higher pressure drop than the WPHE. The performance index considering the heat exchange capacity and pump consumption power, showed in oder of STHEPass1 > STHEPass2 > W PHE > STHEPass4 under the same flow rate. Therefore, when the WPHE was designed optimally under same operating condition with STHE, the maintenance fee and space can be reduced effectively by using the WPHE.

Global Hourly Solar Irradiation Estimation using Cloud Cover and Sunshine Duration in South Korea (운량 및 일조시간을 이용한 우리나라의 시간당 전일사량의 평가)

  • Lee, Kwan-Ho
    • KIEAE Journal
    • /
    • v.11 no.1
    • /
    • pp.15-20
    • /
    • 2011
  • Computer simulation of buildings and solar energy systems is being used increasingly in energy assessments and design. For the six locations (Seoul, Incheon, Daejeon, Deagu, Gwangju and Busan) in South Korea where the global hourly solar irradiation (GHSI) is currently measured, GHSI was calculated using a comparatively simple cloud cover radiation model (CRM) and sunshine fraction radiation model (SFRM). The result was that the measured and calculated values of GHSI were similar for the six regions. Results of cloud cover and sunshine fraction models have been compared with the measured data using the coefficient of determination (R2), root-mean-square error (RMSE) and mean bias error (MBE). The strength of correlation R2 varied within similar ranges: 0.886-0.914 for CRM and 0.908-0.934 for SFRM. Average MBE for the CRM and SFRM were 6.67 and 14.02 W/m2, respectively, and average RMSE 104.36 and 92.15 W/m2. This showed that SFRM was slightly accurate and used many regions as compared to CRM for prediction of GHSI.

A basic study on the Eco-friendly elements evaluation of Hanok according to G-SEED -Focus on the Unjoru and Jinwondang- (녹색건축인증제(G-SEED)에 따른 한옥의 친환경 요소 평가에 관한 기초연구 -구례 운조루와 진원당을 중심으로-)

  • Choi, Hyung-Seok;Kim, Hark-Rae
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.17 no.1
    • /
    • pp.9-18
    • /
    • 2015
  • The purpose of this study is to analyze the usage of eco-friendly elements in Korean traditional architecture to evaluate Hanok(Unjoru and Jinwondang) according to Green Building Certification Criteria(G-SEED). The results of this study were as follows; Unjoru and Jinwondang was not enough to obtain certification points. From Site usage and Traffic category, Jinwondang gets more points than Unjoru. It's because Jinwondang is located in downtown Seoul, so it gets more points of traffic and neighborhood facility. From Energy and Environmental Pollution category, Jinwondang gets more points of energy performance than Unjoru, too. It's because Jinwondang secured insulation performance of wall and windows using insulator and glass. From Resources category, Unjoru gets more points than Jinwondang. It shows that modern Hanok was limited using natural resources. From Ecological Environments category, Jinwondang is located urban area, it's difficult to secure the open space, so Unjoru gets more points than Jinwondang. If Modern Honok installs a system that can getting point and secure insulation performance, it will be certificated according to G-SEED.

Flywheel Energy Storage UPS with Voltage Compensation (플라이휠 저장 에너지를 이용한 무순단 전압보상 기능을 갖는 UPS)

  • Lee K. S.;Kim J. W.;Chun T. W.;Kim I. D.;Kim H. G.;Lee H. H.;Nho E. C.
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.241-247
    • /
    • 2005
  • This paper deals with the operation of a flywheel energy storage UPS. The UPS has good features such as long life-time, improved efficiency, no environmental problems, reduced size and space, and low maintenance cost compared with the conventional UPS using battery. The operating principle of the UPS is analysed in each mode including voltage compensation as well as uninterruptible power supply. Especially, the tracking characteristic of the disturbed phase of the source voltage after outage is analysed. The usefulness of the system is proved through simulations and experiments.