• Title/Summary/Keyword: energy space

Search Result 3,298, Processing Time 0.028 seconds

Design and Structural Analysis of Type 4 Composite Pressure Vessel Fitted in Spare Tire Well (스패어 타이어 웰 부에 설치되는 Type 4 복합재료 압력용기 설계 및 구조해석)

  • LIM, TAE-HOON;BYUN, JONG-IK;CHO, MIN-SIK;KIM, HAN-SANG
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.6
    • /
    • pp.570-577
    • /
    • 2018
  • Composite pressure vessels made through filament winding are widely used in various fields. Numerous studies regarding composite pressure vessels have been conducted in the automotive industry to improve the space efficiency of trunks as well as the fuel efficiency. Compared with steel liquefied petroleum gas (LPG) vessels used in the conventional LPG vehicles, the use of type 4 composite pressure vessels has advantages in terms of reduction of the weight of vehicles. This study focused on development of type 4 composite pressure vessels that can be installed in the spare tire well. Those type 4 composite pressure vessels are designed with torispherical dome shapes instead of geodecis dome shapes because of the space limitation. To reduce deformation due to the stresses in the axial direction of the vessels, thereby securing the safety of the container, the reinforcing bar concept was applied. A structural analysis software, ABAQUS, confirmed the effect of the reinforcing bar on the axial deformation through the type 4 composite pressure vessel. As a result, the final winding angle of the composite layer was analyzed by applying $26^{\circ}/28^{\circ}/26^{\circ}/28^{\circ}/26^{\circ}/88^{\circ}$ The tensile stress was 939.2 MPa and the compressive stress was 249.3 MPa.

The Monitoring System for Location of Workers Inside a Thermal Power Plant Boiler (화력 발전기 보일러 내부 작업자 위치 모니터링 시스템 개발)

  • Song K.;Yun, C.N.;Shin, Y.H.;Shin, J.H.;Han, S.H.;Jang, D.Y.
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.5
    • /
    • pp.71-78
    • /
    • 2021
  • There are regularly planned overhaul periods in thermal power plants, which involve the maintenance of the boiler of the power plants. However, thermal power plants workers are always exposed to risk during overhaul periods owing to the narrow space and significant dust inside the boiler. Therefore, it is essential to develop a safety monitoring system that is suitable for operating in this type of environment. In this study, we developed not only a worker three-dimensional (3D)-location monitoring system that can monitor and record the entry/exit of workers, their 3D-location, and fall accidents but also a method to secure the working environment and operation efficiency. This system comprises of a worker tag, which was equipped with an inertial measurement unit, a barometric pressure sensor, and a Bluetooth low energy (BLE), and the tags were given to each worker. In addition, the location of workers inside the boiler was measured using a pedestrian dead reckoning (PDR) method and BLE beacons. The location data of the workers tag were transmitted to the integrated database (DB) server through a gateway, and to the administrator monitoring system. The performance of the system was demonstrated inside an actual thermal power plant boiler, and the accuracy and reliability of the system were verified through a number of repeated tests. These results provide insights on designing a new system for monitoring enclosed spaces.

User-friendly adjustable table fan with selective rotation angles (사용 편의성 향상을 위한 선풍기의 효율적 회전구간 선정)

  • Kim, Sang-Hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.53-58
    • /
    • 2022
  • Since a general household fan has only one left/right turning stage, the rotation angle cannot be adjusted leading to cases whether the wind reaches to an unnecessary area or vice versa. In this paper, we propose a method to efficiently control the turning section to selectively send wind to a necessary space while reducing energy waste. The minimum rotation angle was obtained by experimentally measured the stationary wind direction angle of the fan, and the optimal number of turning stages was selected by appropriately dividing the space where the wind reaches. Through this, it was confirmed that if the fan has a minimum rotation angle of 45°, a turning section of 3 stages and its rotation angle is increased by twice the stationary wind direction angle at each stage, the wind is distributed efficiently. Therefore, it is considered that the selective turning stage control proposed in this paper can minimize energy waste without significant change of the fan structure.

Cyclic loading behavior of high-strength steel framed-tube structures with replaceable shear links constructed using Q355 structural steel

  • Guo, Yan;Lian, Ming;Zhang, Hao;Cheng, Qianqian
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.827-841
    • /
    • 2022
  • The rotation capacities of the plastic hinges located at beam-ends are significantly reduced in traditional steel framed-tube structures (SFTSs) because of the small span-to-depth ratios of the deep beams, leading to the low ductility and energy dissipation capacities of the SFTSs. High-strength steel framed-tube structures with replaceable shear links (HSSFTS-RSLs) are proposed to address this issue. A replaceable shear link is located at the mid-span of a deep spandrel beam to act as a ductile fuse to dissipate the seismic energy in HSSFTS-RSLs. A 2/3-scaled HSSFTS-RSL specimen with a shear link fabricated of high-strength low-alloy Q355 structural steel was created, and a cyclic loading test was performed to study the hysteresis behaviors of this specimen. The test results were compared to the specimens with soft steel shear links in previous studies to investigate the feasibility of using high-strength low-alloy steel for shear links in HSSFTS-RSLs. The effects of link web stiffener spaces on the cyclic performance of the HSSFTS-RSLs with Q355 steel shear links were investigated based on the nonlinear numerical analysis. The test results indicate that the specimen with a Q355 steel shear link exhibited a reliable and stable seismic performance. If the maximum interstory drift of HSSFTS-RSL is designed lower than 2% under earthquakes, the HSSFTS-RSLs with Q355 steel shear links can have similar seismic performance to the structures with soft steel shear links, even though these shear links have similar shear and flexural strength. For the Q355 steel shear links with web height-to-thickness ratios higher than 30.7 in HSSFTS-RSLs, it is suggested that the maximum intermediate web stiffener space is decreased by 15% from the allowable space for the shear link in AISC341-16 due to the analytical results.

Condensation Heat Transfer of R32 and R454B Inside a Microfin Tube as an Alternative Refrigerant to R410A (R410A 대체냉매 R32와 R454B의 미세핀 관내 응축 열전달)

  • KARAGEORGIS, ANDREAS;HINOPOULOS, GEORGE;KIM, MAN-HOE
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.4
    • /
    • pp.413-418
    • /
    • 2022
  • This paper presents two-phase condensation heat transfer and pressure drop characteristics of R32 and R454B as an alternative refrigerant to R410A in a 9.52 mm OD microfin tube. The test facility has a straight, horizontal test section with an active length of 2.0 m and is cooled by cold water circulated in a surrounding annular space. The heat transfer coefficients of the annular space were obtained using the modified Wilson plot method. Average condensation heat transfer coefficient and pressure drop data are presented at the condensation temperature of 35℃ for the range of mass flux 100-400 kg/m2s. The average condensation heat transfer coefficients of R32 refrigerant are 35-47% higher than R410A at the mass flux considered in the study, while R454B data are similar to R410A. The average pressure drop of R32 and R454B are much higher than R410A and they are 134-224% and 151-215% of R410A, respectively. R32 and R454B have relatively low GWP and high heat transfer characteristics, so they are suitable as alternatives for R410A.

Hydrogen Production by Methanol Steam Reforming over Micro-channel Reactor (마이크로 채널 반응기에서 메탄올의 수증기 개질반응을 통한 수소 제조)

  • Lee, Jin-Woo;Jeon, Hye-Jeong;Hong, Sung-Chang
    • Clean Technology
    • /
    • v.15 no.2
    • /
    • pp.130-136
    • /
    • 2009
  • Commercial catalyst (Cu-Zn/$Al_2O_3$, Johnson Matthey Co., 83-3 Catalyst) was applied to the hydrogen production by steam reforming of methanol in the micro-channel reactor (MCR). The steam reforming of methanol was tested over Cu-Zn catalyst at temperatures in the range of 200 and 300$^{\circ}C$, the catalyst size of 0.05${\sim}$2.2 mm, the space velocity of 3,000${\sim}$10,000 $hr^{-1}$ in a fixed bed continuous flow reactor. The conversion of methanol and the yield $H_2$ preferred high temperatures and low space velocities, and had optimal results with the particle size of 0.35 mm. Based on the results from experiments with fixed bed reactor, two types of MCR, boat bed and stacked bed MCRs, were studied. The stacked bed type MCR showed better methanol conversion compared with the boat type one.

A Pungsu Study on Location and Space Lay out of Traditional House of Jeong, Si-Yoeng in Hwaseong (화성 정시영고택의 입지 및 공간배치의 풍수고찰)

  • Han, Jong-Koo
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.24 no.4
    • /
    • pp.125-132
    • /
    • 2022
  • It can be seen that Traditional house of Jeong Si-yeong is located in a place where Saenggi(good energy), which is important in Pungsu(Feng Shui), can be gathered and that energy can be properly maintained. According to the theory of feng shui, a place that is not easily exposed by the surrounding mountains and is well protected by the strong wind was selected, and the main room was placed on the south side so that the sunlight was adequate while facing the north, so that you can live a comfortable life for a long time. Located on such a relatively well-hidden site, it is a location that can cope well with the invasion of Japanese invaders through the sea in the past, and even today, it is seen as a reasonable base that can be properly protected from strong sea winds in reality. On the other hand, if we look at the Hyungguk theory, it was a house built in the late Joseon Dynasty, and we could see the hidden hopes of the nobles at the time. The mountain behind the house is a haebok-type with a crab lying on the seashore, and what the crab symbolizes is the past national exam for official. Considering that the name of the place where the house is located is also Oyat(cucumber tree)-ri, where many cucumber trees closely related to the royal family of the Joseon Dynasty were planted, it seems that the family wished for prosperity by producing many Sadaebu(upper class gentry) in the past and forming a good relationship with the royal family.

Comparison of advance rate and powder factor of two- and three-free-face blasting (2, 3 자유면 발파의 굴진율 및 비장약량 비교)

  • Youngmin Yoon;Seokwon Jeon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.5
    • /
    • pp.403-419
    • /
    • 2024
  • Advance rate significantly affects both the construction period and cost in tunnel blasting. As such, there has been persistent research dedicated to the development of innovative blasting technique aimed at enhancing the advance rate. This paper aims to provide fundamental insights into the differences in advance rate and the powder factor between two- and three-free-face blasting, laying the groundwork for the advancement of tunnel blasting techniques. Large-scale cement mortar specimens were fabricated, and blasting tests were conducted for both two- and three-free-face blasting. Experimental findings were then compared with those from numerical simulation. Notably, an increase in the number of free faces, under uniform conditions, significantly improved the advance rate while reducing the powder factor. The outcomes of this study serve as crucial groundwork for devising blasting patterns employing three-free-face blasting, characterized by improved advance rates and minimized powder factors. Consequently, the anticipated outcomes include an overall improvement in tunnel advance rates and a reduction in the number of drilling holes and the amounts of explosives.

A study on design process for public space by users behavioral characteristics (이용자 행태 특성에 의한 공용공간의 디자인 프로세스 연구)

  • 김개천;김범중
    • Archives of design research
    • /
    • v.17 no.1
    • /
    • pp.89-98
    • /
    • 2004
  • A systemic approach to behavior on the basis of human psychology is needed for behavior-centered space design. Also, the recognition that human and environment, in all, have complementarity is needed- human and space shall be understood as a general phenomenon, supposing interaction. Design of behavior-oriented space means configuration and coordination of physical subjects as well as understanding, analysis and reflection of psychological and behavioral phenomena. It is analysis of a private individual as well as understanding of interaction between human groups, as well. In respect of space recognition, analysis not on material movement but on energy circulation and variable is important. It means that the understanding of user's behavior and psychology does not orient reasonable purpose just for convenience. That is, such understanding intends to understand behavioral patterns and psychological phenomena between space and human beyond the decomposition of structure of human and space into physical elements and the design based on standardized data. Thereby, more human-oriented space design might be implemented by the understanding of behavioral essence. Also, a user-centered design process from another viewpoint might be created, and the general amenity among man, space and environment - better environmental quality - might be produced. For this, the consciousness of human activity that is, activity system shall be ahead of it, and the approaches for design shall be implemented into a process not in predictive ideas but in semi-scientific system. On the basis of the above view, this study was attempted to investigate the orientation of design to recognize space as another life, and explore a process where it is drawn into a design language on the basis of human behavior. If the essence of space behavior and the activity system are analyzed through user observation and it is reflected upon a space design program and then developed into a formative language, a new design process on human and environment might be produced. In conclusion, the reflection of user's behavior and psychology into design, contrary to existing public space design based on physical data, can orient quality improvement of human life and ultimately be helpful to the proposition, 'humanization of space'.

  • PDF

Positron Annihilation Spectroscopy of Active Galactic Nuclei

  • Doikov, Dmytry N.;Yushchenko, Alexander V.;Jeong, Yeuncheol
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.21-33
    • /
    • 2019
  • This paper focuses on the interpretation of radiation fluxes from active galactic nuclei. The advantage of positron annihilation spectroscopy over other methods of spectral diagnostics of active galactic nuclei (therefore AGN) is demonstrated. A relationship between regular and random components in both bolometric and spectral composition of fluxes of quanta and particles generated in AGN is found. We consider their diffuse component separately and also detect radiative feedback after the passage of high-velocity cosmic rays and hard quanta through gas-and-dust aggregates surrounding massive black holes in AGN. The motion of relativistic positrons and electrons in such complex systems produces secondary radiation throughout the whole investigated region of active galactic nuclei in form of cylinder with radius R= 400-1000 pc and height H=200-400 pc, thus causing their visible luminescence across all spectral bands. We obtain radiation and electron energy distribution functions depending on the spatial distribution of the investigated bulk of matter in AGN. Radiation luminescence of the non-central part of AGN is a response to the effects of particles and quanta falling from its center created by atoms, molecules and dust of its diffuse component. The cross-sections for the single-photon annihilation of positrons of different energies with atoms in these active galactic nuclei are determined. For the first time we use the data on the change in chemical composition due to spallation reactions induced by high-energy particles. We establish or define more accurately how the energies of the incident positron, emitted ${\gamma}-quantum$ and recoiling nucleus correlate with the atomic number and weight of the target nucleus. For light elements, we provide detailed tables of all indicated parameters. A new criterion is proposed, based on the use of the ratio of the fluxes of ${\gamma}-quanta$ formed in one- and two-photon annihilation of positrons in a diffuse medium. It is concluded that, as is the case in young supernova remnants, the two-photon annihilation tends to occur in solid-state grains as a result of active loss of kinetic energy of positrons due to ionisation down to thermal energy of free electrons. The single-photon annihilation of positrons manifests itself in the gas component of active galactic nuclei. Such annihilation occurs as interaction between positrons and K-shell electrons; hence, it is suitable for identification of the chemical state of substances comprising the gas component of the investigated media. Specific physical media producing high fluxes of positrons are discussed; it allowed a significant reduction in the number of reaction channels generating positrons. We estimate the brightness distribution in the ${\gamma}-ray$ spectra of the gas-and-dust media through which positron fluxes travel with the energy range similar to that recorded by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) research module. Based on the results of our calculations, we analyse the reasons for such a high power of positrons to penetrate through gas-and-dust aggregates. The energy loss of positrons by ionisation is compared to the production of secondary positrons by high-energy cosmic rays in order to determine the depth of their penetration into gas-and-dust aggregations clustered in active galactic nuclei. The relationship between the energy of ${\gamma}-quanta$ emitted upon the single-photon annihilation and the energy of incident electrons is established. The obtained cross sections for positron interactions with bound electrons of the diffuse component of the non-central, peripheral AGN regions allowed us to obtain new spectroscopic characteristics of the atoms involved in single-photon annihilation.