• Title/Summary/Keyword: energy space

Search Result 3,298, Processing Time 0.029 seconds

Basic Rotation Characteristics and Energy Efficiencies of a Blade-Type Corona Motor (날개전극형 코로나 모터의 기초 회전특성 및 에너지 효율)

  • Jung, Jae-Seung;Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1862-1868
    • /
    • 2010
  • A corona motor, as one of a powerful cooling means of microelectronic devices, has been employed because of its very simple structure of no coils and no brushes. In this paper, the effect of polarity of applied voltage and the number of blade corona electrodes on the fundamental properties of rotation of the motor was investigated. The I-V and rotation characteristics of the blade corona electrode were significantly different from the different polarities of applied voltages and the blade corona electrode numbers, due to the different space charge effect resulted by the different migration mobility of the positive and negative ions generated near the blade corona electrode tip of the rotor of the motor. The rotation speed of the motor was influenced significantly by the polarity of corona discharge, the number of blades, and mass of rotor. At the same corona current, an effective rotation can be obtained with the positive corona caused by the lower ion mobility. On the other hand, the higher rotation speed can be obtained with the negative corona resulted from its higher corona current. The highest rotation speed and energy efficiency can be obtained with the rotor having 4 blades.

A Study on the Characteristics of Swirl Flow in a Diesel Engine by 2-Zone Energy Method and Image Process of Flame (2영역 에너지법과 화염 화상 처리법을 이용한 디젤 연소실내 스월 유동 특성에 관한 연구)

  • Chung, Jae-Woo;Lee, Ki-Hyung;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1655-1662
    • /
    • 2002
  • Recently, many researches have been performed to improve the performance of the combustion and emission in a D.I.Diesel engine. And many new techniques have been introduced and developed to reduce NO$_{x}$ and soot exhausted from diesel combustion. Some of these methods have the peculiar injection timing which is not used to traditional timing. To optimize these injection timing, characteristics of swirl flow and interaction of swirl with injection in the diesel engine should be investigated more carefully. Therefore, in this study, 2-zone energy method is adopted for the understanding of swirl flow in condition of moving piston, and then flame visualizations and image process are performed. From these studies, the characteristics of the swirl flow generated by SCV was investigated and the effect of swirl on injection timing was elucidated. As the results, velocity distribution caused by swirl flow increase the space utilization rate of flame plums. And flame plums of weak momentum are remained inside of combustion chamber by the swirl flow.w.

Development of a Unified Research Platform for Plug-In Hybrid Electrical Vehicle Integration Analysis Utilizing the Power Hardware-in-the-Loop Concept

  • Edrington, Chris S.;Vodyakho, Oleg;Hacker, Brian A.
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.471-478
    • /
    • 2011
  • This paper addresses the establishment of a kVA-range plug-in hybrid electrical vehicle (PHEV) integration test platform and associated issues. Advancements in battery and power electronic technology, hybrid vehicles are becoming increasingly dependent on the electrical energy provided by the batteries. Minimal or no support by the internal combustion engine may result in the vehicle being occasionally unable to recharge the batteries during highly dynamic driving that occurs in urban areas. The inability to sustain its own energy source creates a situation where the vehicle must connect to the electrical grid in order to recharge its batteries. The effects of a large penetration of electric vehicles connected into the grid are still relatively unknown. This paper presents a novel methodology that will be utilized to study the effects of PHEV charging at the sub-transmission level. The proposed test platform utilizes the power hardware-in-the-loop (PHIL) concept in conjunction with high-fidelity PHEV energy system simulation models. The battery, in particular, is simulated utilizing a real-time digital simulator ($RTDS^{TM}$) which generates appropriate control commands to a power electronics-based voltage amplifier that interfaces via a LC-LC-type filter to a power grid. In addition, the PHEV impact is evaluated via another power electronic converter controlled through $dSPACE^{TM}$, a rapid control systems prototyping software.

A Study on Examples of Eco-Friendly School Design - Focusing on School Facilities in USA, Japan and Korea - (학교건축의 친환경적 계획수법에 대한 사례연구 - 미국, 일본, 한국의 학교건축을 중심으로 -)

  • Lee, Ji-Young;Lee, Kyung-Sun
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.18 no.2
    • /
    • pp.3-14
    • /
    • 2011
  • This study aims to identify differences and lessons in eco-school planning techniques and sustainable design methods by analyzing comparatively green building certification system and the cases of sustainable schools in US, Korea and Japan. As a result of the comparative analysis, green building certification system for school facilities, both domestic and international, is categorized into external environment, energy, materials and resources, and indoor environment. From the case study, it is common that roof garden and biotopes are installed for external environment, while energy saving, passive energy utilization methods for natural lighting and ventilation such as arrangement planning, courtyard, top-light, shading devices, solar panel and insulation by roof garden are most frequently used. Also, storm water uses, water saving equipment and sustainable materials are often introduced for resource savings. Concerns for indoor environment is frequently addressed by introducing natural light and ventilation in the buildings, which makes ultimately a comfortable space.

  • PDF

EGS Power Generation and Hydraulic Stimulation (EGS 지열발전과 저류층 수리자극 기술)

  • Min, Ki-Bok;Song, Yoonho;Yoon, Woon-Sang
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.506-520
    • /
    • 2013
  • While geothermal energy provides the only base-load power among renewable energy sources, its development has been carried out predominantly in volcanic area. EGS (Enhanced Geothermal System) is a ubiquitous technology that can allow the geothermal power generation virtually in any area. This manuscript introduces the current state-of-the-art of EGS development in the world and presents the hydraulic stimulation technology and associated microseismicity which are key technical component in EGS. Finally this paper suggests the key research areas required in Korea for further development of EGS.

A Study on the Combustion Characteristics over Pd/cordierite Catalyst (Pd/cordierite 촉매상에서 메탄의 연소 특성 고찰)

  • Cho, Won-Ihl;Oh, Young-Sam;Park, Dal-Ryung;Baek, Young-Soon;Pang, Hyo-Sun;Mok, Young-Il
    • Journal of Energy Engineering
    • /
    • v.6 no.1
    • /
    • pp.34-40
    • /
    • 1997
  • This study aims to investigate the application possibility on natural gas in relation to the catalytic combustion of methane on Pd/cordierite catalyst which is currently used as an automobile converter catalyst. The surface area of the catalyst tested was determined to be about 18.7㎡/g and to keep stable condition in structure at mid-high temperatures. The activation energy for methane combustion reaction was estimated to be 19.2 kcal/mol and a hysterisis on the catalyst activity was observed in terms of the catalyst deactivation as the reaction temperature was varied for the methane combustion. On Pd/cordierite catalyst, The characteristics of methane combustion were studied as functions of space velocity and air/fuel ratios below 700$^{\circ}C$.

  • PDF

Characteristics of direct laser micromachining of IC substrates using a nanosecond UV laser (나노초 UV 레이저 응용 IC 기판 소재 조성별 가공 특성)

  • Sohn, Hyon-Kee;Shin, Dong-Sig;Choi, Ji-Yeon
    • Laser Solutions
    • /
    • v.15 no.3
    • /
    • pp.7-10
    • /
    • 2012
  • Dimensions (line/space) of circuits in IC substrates for high-end chips (e.g. CPU, etc.) are anticipated to decrease as small as $10{\mu}m/10{\mu}m$ in 2014. Since current etch-based circuit-patterning processes are not able to address the urgent requirement from industry, laser-based circuit patterning processes are under active research in which UV laser is used to engrave embedded circuits patterns into IC substrates. In this paper, we used a nanosecond UV laser to directly fabricate embedded circuit patterns into IC substrates with/without ceramic powders. In experiments, we engraved embedded circuit patterns with dimensions (width/depth) of abut $10{\mu}m/10{\mu}m$ and $6{\mu}m/6{\mu}m$ into the IC substrates. Due to the recoil pressure occurring during ablation, the circuit patterning of the IC substrates with ceramic powders showed the higher ablation rate.

  • PDF

Analysis of Parameters Affecting LiDAR Intensity on Rock (암석에 대한 라이다 반사강도의 영향 인자 분석)

  • Kim, Moonjoo;Lee, Sudeuk;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.417-431
    • /
    • 2020
  • In this study, a fundamental investigation was made on how to use LiDAR technology to determine the degree of weathering and alteration of rock mass. The purpose of the study was to identify the affecting parameters to LiDAR intensity and to quantitatively assess the relations among them through laboratory-scale experiment. A few potential affecting parameters were selected including scanning distance, incidence angle, surface roughness, surface color, mineral composition, and water saturation. In the experiment, FARO LiDAR unit was used for twelve different types of specimen. It was observed that the intensity was affected by, in the order of importance, surface color, incidence angle, scanning distance, property of rock, water condition, and surface roughness.

The Effects of Temperature Change on the Residual Bending Strength of CFRP Laminates after Impact (온도변화가 CFRP 적층재의 충격후 잔류굽힘강도에 미치는 영향)

  • Ra Seung-woo;Jung Jong-an;Yang In-young
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.75-80
    • /
    • 2005
  • In this paper, when CF/EPOXY laminates for high efficiency space structure are subjected to FOD(Foreign Object Damage), the effects of temperature change on the impact damages(inter laminar separation and transverse crack) of CF/EPOXY laminates and the relationship between residual life and impact damages ale experimentally investigated. Composite laminates used in this experiment are CF/EPOXY orthotropic laminated plates, which have two-interfaces $[0^{\circ}_6/90^{\circ}_6]S$ and four-interfaces $[0^{\circ}_3/90^{\circ}_6/0^{\circ}_3]S$. CF/EPOXY specimens with impact damages caused by a steel ball launched from the air gun were observed by the scanning acoustic microscope under room and high temperatures. In this experimental results, various relations were experimentally observed including the delamination area vs. temperature change, the bending strength vs. impact energy and the residual bending strength vs. impact damage of CF/EPOXY laminates. And as the temperature of CF/PEEK laminates increases, the delaminaion areas of impact-induced damages decrease linearly. A linear relationship between the impact energy and the delamination areas were observed. As the temperature of CF/PEEK laminates increases, the delamination areas decrease because of higher initial delaminatin damage energy.

Effect of Propene($C_3H_6$) ON NO-$NO_2$ Conversion Process in a Pulsed Corona Discharge (펄스코로나 방전에서 프로핀($C_3H_6$)이 NO-$NO_2$ 변환에 미치는 영향에 관한 연구)

  • 박광서;전배혁;전광민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.67-77
    • /
    • 2000
  • Investigated was the effect of propene(C3H6) on the NO-NO2 conversion in dry exhaust gases from lean burn engine using a pulsed corona discharge. A kinetic model was developed to characterize the plasma chemistry in simulated exhausts containing propene. The model uses ELENDIF program to solve Boltzmann equation for electron energy distribution function, and CHEMKIN-II program to solve stiff ODE(ordinary differential equation) problems for species concentrations. The corona discharge energy per pulse and the time-space averaged E/N were obtained by fitting the model to experimental data. The model calculation shows good agreement for NO and NO2 concentrations with the experimental data, and predicts the formation of byproducts such as CH2O, CH3HCO, CO AND CH3NO2 Propene enhances the NOx conversion enormously at lower energy density and the NOx conversion increases with the increase of initial propene and oxygen concentration, and temperature.

  • PDF