• Title/Summary/Keyword: energy space

Search Result 3,298, Processing Time 0.028 seconds

Validity of solar energy generation at the underused Space of LPG filling station (LPG충전소 유휴공간의 태양광발전설비 설치 유효성)

  • Lee, Minkyung;Kim, Jeonghwan;Lee, Jinhan;Joe, Youngdo;Lee, Yeonjae
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.4
    • /
    • pp.25-32
    • /
    • 2016
  • The purpose of this study is safety evaluation of solar energy generation which is installed on the canopy at the LPG filling station. in case of a gas station, the solar energy generation was become legalization through a related law reform in 2008. Also, in case of a LPG filling station, the solar energy generation was become legalization through a related law reform in 2015. So, the related law that KGS CODE and Safety control of dangerous substances law and the case of installed solar energy generation in gas, LPG filling station was investigated. two scenarios are supposed for the CFD. Release of safety valve pipeline and ruptured dispenser leakage are the scenarios. The FLACS which developed GexCon in Norway was used for simulation. LPG dispersion to the upper side of canopy was very small with safety distance.

An Energy-Efficient MAC Protocol for Werable Device WBAN Environment through Asymmetric Method and QoS (Wearable 장치를 사용하는 WBAN 환경에서 장치 간 비대칭적 에너지 효율과 QoS를 위한 MAC 제안)

  • Lee, Jae-Ho;Eom, Doo-Seop
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6A
    • /
    • pp.395-404
    • /
    • 2012
  • In general, WBAN environment which use wearable devices on the human body show the different characteristics from other personal area networks. It is usually composed of sensors contacting the body and user terminal collecting the data from the sensors. The sensors are under the significant constraint of the energy resources, but the user terminal is different because it can be recharged and relatively have large energy resources. Under this characteristics, we design a new MAC protocol considering this requirements. The proposed MAC protocol can increase the energy efficiency of sensors and loads the unavoidable energy consumption to the user terminal for high energy efficiency of sensors. Additionally, the proposed MAC protocol provides the low delivery delay of the emergency information for the differentiated QoS because the emergency data requires more rapid transmission than the periodic sensed data. For this requirement, we employ the IFS (Inter Frame Space). For the efficient and objective evaluation of the proposed MAC protocol, IEEE 802.15.6 MAC is used to compare with it and we show that the advantage of the proposed MAC meet our expectation.

The economic benefit of combustible waste into energy: A contingent valuation study (Fe3C12 식각을 이용한 콘덴싱 보일러 잠열 열교환기의 응축 열전달 촉진)

  • Jang, J.H.;Ahn, J.;Shin, D.H.;Chung, T.Y.
    • Journal of Energy Engineering
    • /
    • v.22 no.3
    • /
    • pp.307-311
    • /
    • 2013
  • Heating and hot water has accounted for 68% of Korea's household energy usage. Boiler makes up the bulk of the heating and hot water production. Hence a highly efficient boiler is needed in order to reduce energy consumption. A condensing boiler that recovers latent heat is known to be highly efficient. However, it is expensive and takes more space to necessitate research for improvement. In the present study, we investigated condensation heat transfer of a surface roughened by etching treatment. The etched plate showed 9.2% increase in heat transfer compared to original plate.

Evaluation of Blast Pressure Generated by an Explosion of Explosive Material (폭발성 물질의 폭발에 따른 폭발압력 평가)

  • Yoon, Yong-Kyun
    • Explosives and Blasting
    • /
    • v.36 no.4
    • /
    • pp.26-34
    • /
    • 2018
  • Explosions of vapor cloud formed due to the leakage from installations with flammable fuels have often occurred in Korea and foreign countries. In this study, TNT equivalency method and Multi-Energy method for vapor cloud explosion blast modelling are described and demonstrated in a case study. As TNT equivalency method is simple and direct, it has been widely used for modelling a vapor cloud explosion blast. But TNT equivalency method found to be difficult to select a proper correlation between the amount of combustion energy produced from the vapor cloud explosion and the equivalent amount of TNT to model its blast effects. Multi-Energy method assumes that the strength of vapor cloud explosion blast depends on the layout of the space where the vapor cloud is spreading. Strictly speaking, the explosive potential of a vapor cloud is dependent upon the density of the obstructed regions. In this study, Flixborough accident are analyzed as a case study to assess the applicability of TNT equivalency method and Multi-Energy method. TNT equivalency method and Multi-Energy method found to be applicable if coefficient of TNT equivalency and coefficient of strength of explosion blast are selected properly.

A Study of Critical Items and Related Standards on Designing for Passive Apartments (패시브 공동주택 계획을 위한 설계 중점항목 및 관련 기준 연구)

  • Lee, Myoung-Ju
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.7
    • /
    • pp.21-29
    • /
    • 2018
  • This study aimed to find and suggest the purpose of future plans, critical items on designing and Related standards to amend construction standards for domestic energy saving and environmentally friendly housings. It would also activate and increase the supplies of passive house minimizing the problems on current apartment housings in winter and reducing heating energy which brings fine dust pollution. After defining the standard model of Korean apartment housings(reference model), this study calculated the amount of heating energy demand per unit area annually as applying the yearly changed standards from 2008 to 2017 to existing standard model. It turned out that applying 2017 construction standards of energy saving and eco-friendly housings to reference model has saved up to 75% of heating energy demand comparing to the one applied 2008's. However, it still could not solve the fundamental problems such as winter fungus, condensation, freezing, freeze and burst, and insulation weakness space, and could not be free from fine dust particles. To solve them, this study suggested improved standards adding critical items on design related to outside insulation, cut off the heat-bridge, enforce air-tightness and heat change efficiency on heat recovery ventilator. As a result, it has reduced more than 10% of heat demand from 2017. It would be more than 90% of savings from 2008 if we make the amount of heat loss be zero on heat bridge on designing stage in the future.

Power peaking factor prediction using ANFIS method

  • Ali, Nur Syazwani Mohd;Hamzah, Khaidzir;Idris, Faridah;Basri, Nor Afifah;Sarkawi, Muhammad Syahir;Sazali, Muhammad Arif;Rabir, Hairie;Minhat, Mohamad Sabri;Zainal, Jasman
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.608-616
    • /
    • 2022
  • Power peaking factors (PPF) is an important parameter for safe and efficient reactor operation. There are several methods to calculate the PPF at TRIGA research reactors such as MCNP and TRIGLAV codes. However, these methods are time-consuming and required high specifications of a computer system. To overcome these limitations, artificial intelligence was introduced for parameter prediction. Previous studies applied the neural network method to predict the PPF, but the publications using the ANFIS method are not well developed yet. In this paper, the prediction of PPF using the ANFIS was conducted. Two input variables, control rod position, and neutron flux were collected while the PPF was calculated using TRIGLAV code as the data output. These input-output datasets were used for ANFIS model generation, training, and testing. In this study, four ANFIS model with two types of input space partitioning methods shows good predictive performances with R2 values in the range of 96%-97%, reveals the strong relationship between the predicted and actual PPF values. The RMSE calculated also near zero. From this statistical analysis, it is proven that the ANFIS could predict the PPF accurately and can be used as an alternative method to develop a real-time monitoring system at TRIGA research reactors.

Modeling Solar Irradiance in Tajikistan with XGBoost Algorithm (XGBoost를 이용한 타지키스탄 일사량 예측 모델)

  • Jeongdu Noh;Taeyoo Na;Seong-Seung Kang
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.403-411
    • /
    • 2023
  • The possibility of utilizing radiant solar energy as a renewable energy resource in Tajikistan was investigated by assessing solar irradiance using XGBoost algorithm. Through training, validation, and testing, the seasonality of solar irradiance was clear in both actual and predicted values. Calculation of hourly values of solar irradiance on 1 July 2016, 2017, 2018, and 2019 indicated maximum actual and predicted values of 1,005 and 1,009 W/m2, 939 and 997 W/m2, 1,022 and 1,012 W/m2, 1,055 and 1,019 W/m2, respectively, with actual and predicted values being within 0.4~5.8%. XGBoost is thus a useful tool in predicting solar irradiance in Tajikistan and evaluating the possibility of utilizing radiant solar energy.

Examining the Influence of TBM Chamber Condition and Transmission Distance on the Received Strength of Bluetooth Low Energy Signals: A Laboratory Simulation Experiment (TBM 챔버 상태와 전송 거리에 따른 저전력 블루투스 신호의 수신 강도 분석: 실험실 모사 실험)

  • Yosoon Choi;Hoyoung Jeong;Jeongju Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.425-434
    • /
    • 2023
  • To measure the wear amount of the TBM disk cutter in real time, it is important not only to automate the measurement using sensors, but also to stably transmit the measured data to the information processing system. In this study, we investigated the viability of utilizing Bluetooth Low Energy (BLE) technology to wirelessly transmit sensor data from the TBM cutter head to a receiver located at the chamber's rear. Through laboratory experiments, we analyzed the Received Signal Strength Index (RSSI) of the receiver considering various signal strength of the transmitter, separation distances between the transmitter and receiver and chamber fill materials. Our results demonstrate that wireless data transmission is feasible across all tested conditions when the transmitter signal strength is 0 dBm or higher.

Current Status of Demonstration Test to Investigate Erosion and Piping Phenomena of Buffer Material around Near Field Rock Mass and Introduction of BEPT (근계영역에서 완충재 침식, 파이핑 현상 규명을 위한 실증실험 현황 및 BEPT 실험 소개)

  • Seungbeom Choi;Chang-Ho Hong;Ji-Won Kim;Minhyeong Lee;Eun-Soo Hong;Jin-Seop Kim
    • Tunnel and Underground Space
    • /
    • v.34 no.4
    • /
    • pp.249-266
    • /
    • 2024
  • Bentonite buffer material is an important component of engineered barrier designed for the safe disposal of high-level radioactive waste. Under certain groundwater conditions, erosion or piping phenomena of the material can happen, which may compromise the overall safety of the whole engineered barrier system. Previous domestic researches related to it have been conducted at a laboratory scale so that those are subject to some limitations, despite their valuable results. Therefore, KAERI (Korea Atomic Energy Research Institute) has planned the BEPT (Bentonite Erosion and Piping Test) to extend and validate the previous works at a field conditions. Prior to detailed experimental design, case studies that had been conducted by leading countries in disposal research were collected and analyzed. The analyses included suitable site conditions and system design, which were incorporated into the detailed design of BEPT. This technical report aims to introduce the previous researches and the current status of the ongoing BEPT experiment.

The Thermal Performance Comparison of BIPVT Collector Applied on Roofs and Facades (건물 적용 유형별 BIPVT 집열기 열적 실험성능 비교)

  • Gang, Jun-Gu;Kim, Jin-Hui;Kim, Jun-Tae
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.11a
    • /
    • pp.269-272
    • /
    • 2009
  • The temperature of PV modules that integrated into building facades or roof increases that could reduce the electrical efficiency of the PV system. In order to incresae PV system's efficiency it is very important to remove the heat from the PV modules. For this purpose, hot air can be extracted from the space between PV modules and building envelope, and used for heating in buildings. The solar collector utilizing this thermal effect is called photovoltaic-thermal(PVT) solar collector. This paper compares the experimental performance of building-integrated PVT collectors that applied on building roof and facade. There are two different case: a roof-integrated PVT type and a facade-integrated PVT type. The experimental results show that the collected thermal energy of the roof-integrated type was 24% higher, compared to that of the facade-integrated.

  • PDF