• Title/Summary/Keyword: energy space

Search Result 3,298, Processing Time 0.026 seconds

A Numerical Analysis of Supersonic Intake Buzz in an Axisymmetric Ramjet Engine

  • Yeom, Hyo-Won;Sung, Hong-Gye;Yang, Vigor
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.165-176
    • /
    • 2015
  • A numerical analysis was conducted to investigate the inlet buzz and combustion oscillation in an axisymmetric ramjet engine with wedge-type flame holders. The physical model of concern includes the entire engine flow path, extending from the leading edge of the inlet center-body through the exhaust nozzle. The theoretical formulation is based on the Farve-averaged conservation equations of mass, momentum, energy, and species concentration, and accommodates finite-rate chemical kinetics and variable thermo-physical properties. Turbulence closure is achieved using a combined scheme comprising of a low-Reynolds number k-${\varepsilon}$ two-equation model and Sarkar's compressible turbulence model. Detailed flow phenomena such as inlet flow aerodynamics, flame evolution, and acoustic excitation as well as their interactions, are investigated. Mechanisms responsible for driving the inlet buzz are identified and quantified for the engine operating at subcritical conditions.

A Comparative Study of Transcription Techniques for Nonlinear Optimal Control Problems Using a Pseudo-Spectral Method

  • Kim, Chang-Joo;Sung, Sangkyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.264-277
    • /
    • 2015
  • This article investigates various transcription techniques for the Legendre pseudospectral (PS) method to compare the pros and cons of each approach. Eight combinations from four different types of collocation points and two discretization methods for dynamic constraints, which differentiate Legendre PS transcription techniques, are implemented to solve a carefully selected test set of nonlinear optimal control problems (NOCPs). The convergence property and prediction accuracy are compared to provide a useful guideline for selecting the best combination. The tested NOCPs consist of the minimum time, minimum energy, and problems with state and control constraints. Therefore, the results drawn from this comparative study apply to the solution of similar types of NOCPs and can mitigate much debate about the best combinations. Additionally, important findings from this study can be used to improve the numerical efficiency of the Legendre PS methods. Three PS applications to the aerospace engineering problems are demonstrated to prove this point.

Effect of Dynamic SGS Model in a Kerosene-LOx Swirl Injector under Supercritical Condition

  • Heo, Jun-Young;Hong, Ji-Seok;Sung, Hong-Gye
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.254-263
    • /
    • 2015
  • In this study, numerical simulations are carried out to investigate the dynamic SGS model effects in a Kerosene-LOx coaxial swirl injector under high pressure conditions. The turbulent model is based on large-eddy simulation (LES) with real-fluid transport and thermodynamics. To assess the effect of the dynamic subgrid-scale (SGS) model, the dynamic SGS model is compared with that of the algebraic SGS model. In a swirl injector under supercritical pressure, the characteristics of temporal pressure fluctuation and power spectral density (PSD) present comparable discrepancies dependant on the SGS models, which affect the mixing characteristics. Mixing efficiency and the probability density (PDF) function are conducted for a statistical description of the turbulent flow fields according to the SGS models. The back-scattering of turbulent kinetic energy is estimated in terms of the film thickness of the swirl injector.

Analytical Performance Evaluation of Superdetonative Mode Ram Accelerator; Considering Influence of Aluminum Vapor

  • Sung, Kunmin;Jeung, In-Seuck
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.358-365
    • /
    • 2016
  • In this study, one-dimensional analysis under the assumption of an inviscid flow was conducted for the experiment initiated by the French-German Research Institute of Saint-Louis (ISL) in order to investigate the energy effect of aluminum combustion. Previous theoretical analysis based on the assumptions of isentropic compression and a constant specific heat derived by ISL claimed that the experiment was not affected by the heat of aluminum combustion. However, rigorous analysis in present investigation that considered the average properties behind the shock wave compression and temperature-dependent specific heat showed that the S225 experiment was partially affected by the aluminum combustion. The increase in heat due to aluminum combustion was estimated from the rigorous analysis.

Evaluation of Thermal Performance in a Stadium with Air Circulation System (공기순환 시스템이 설치된 경기장 공간의 열성능 평가)

  • Kim, Kyung-Hwan;Im, Yoon-Chul;Lee, Jae-Heon;Oh, Myung-Do;Park, Myung-Sig;Lee, Dae-Woo;Park, Young-Woo
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.170-174
    • /
    • 2001
  • In this paper, CFD technique has been used at design stage to predict space air distribution in a cycle stadium with air circulation system. An air circulation flow of 0.67 rev./min was observed at computed results in the stadium space with and without air circulation system. Comparing the thermal comfort of the two models with or without air circulation system showed that the thermal environment in the former was superior in the latter. Energy savings could be achieved for the model with air circulation due to its lower air inflow temperature.

  • PDF

Fundamental Investigation Results on Ozone Generation Characteristics by Superimposed Discharge (중첩방전에 의한 오존생성 특성)

  • ;Chobei YAMABE
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.2
    • /
    • pp.91-97
    • /
    • 2003
  • In addition to its strong oxidizing power, the ozone has definite advantages over other commercial oxidants, namely, no undesirable by- products or residues are formed. With growing interest in the improvement of the ozone production in the industrial fields, many types of ozonizer using the electrical discharges have been proposed for the higher efficiency and the higher Performance at atmospheric Pressure. Among them, a superposition of different type discharges has been proposed. Especially, since the improvement for the low efficiency of dc discharge and narrow gap of surface discharge is required, a do and an at voltage are applied to same reaction space (or volume) to increase energy density at the same space. An investigation was focused on the superposition with a dc (streamer) corona and 3 surface discharge. This paper describes the investigation results on fundamental ozone generation characteristics by this superimposed discharge.

Earthquake Response Analysis for 2-D Fluid-Structure-Soil Systems (2차원 유체-구조물-지반계의 지진응답해석)

  • 윤정방;장수혁;김재민
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.132-137
    • /
    • 2001
  • This paper presents a method of seismic analysis for a 2-D fluid-structure-soil interaction systems. With this method, the fluid can be modeled by spurious free 4-node displacement-based fluid elements which use rotational penalty and mass projection technique in conjunction with the one point reduced integration scheme to remove the spurious zero energy modes. The structure and the near-field soil are discretized by the standard 2-D finite elements, while the unbounded far-field soil is represented by the dynamic infinite elements in the frequency domain. Since this method directly models the fluid-structure-soil interaction systems, it can be applied to the dynamic analysis of a 2-D liquid storage structure with complex geometry. Finally, results of seismic analyses are presented for a spent fuel storage tank embedded in a layered half-space and a massive concrete dam on a layered half-space.

  • PDF

A NEW CATALOG OF SILICATE CARBON STARS

  • Kwon, Young-Joo;Suh, Kyung-Won
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.4
    • /
    • pp.123-135
    • /
    • 2014
  • A silicate carbon star is a carbon star which shows circumstellar silicate dust features. We collect a sample of 44 silicate carbon stars from the literature and investigate the validity of the classification. For some objects, it is uncertain whether the central star is a carbon star. We confirm that 29 objects are verified silicate carbon stars. We classify the confirmed objects into three subclasses based on the evolution phase of the central star. To investigate the effect of the chemical transition phase from O to C, we use the radiative transfer models for the detached silicate dust shells. The spectral energy distributions and the infrared two-color diagrams of the silicate carbon stars are compared with the theoretical model results. For the chemical transition model without considering the effect of a disk, we find that the life time of the silicate feature is about 50 to 400 years depending on the initial dust optical depth.

Reduced Order Modeling of Backward-Facing-Step Flow Field (후향계단 유동장 축약모델링 기법)

  • Lee, Jin-Ik;Lee, Eun-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.10
    • /
    • pp.833-839
    • /
    • 2012
  • In this paper, we analyze the reconstruction error in the modeling of flow field on BFS(Backward Facing Step). In order for the mathematical modelling of a density on the field, the spatial and temporal modes are extracted by POD(Proper Orthogonal Decomposition) method. After formulating the modeling error, we summarize the relationship between the energy strength and the reconstruction errors. Moreover the allowable modeling error limits in the flow control point of view are confined by analysing in the frequency domain as well as time domain of the reconstructed data.

Feedback flow control using the POD method on the backward facing step wall model

  • Cho, Sung-In;Lee, In;Lee, Seung-Jun;Lee, Choong Yun;Park, Soo Hyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.428-434
    • /
    • 2012
  • Missiles suffer from flight instability problems at high angles of attack, since vortex flow over a fuselage cause lateral force to the body. To overcome this problem at a high angle of attack, the development of a real time vortex controller is needed. In this paper, Proper Orthogonal Decomposition (POD) and feedback controllers are developed for real time vortex control. The POD method is one of the most well known techniques for modeling low order models that represent the original full-order model. An adaptive control algorithm is used for real time control.