• Title/Summary/Keyword: energy sharing

Search Result 269, Processing Time 0.024 seconds

Cooperative Spectrum Sensing Based on Fuzzy control (Fuzzy 제어 기반 협력 스펙트럼 센싱)

  • Lee, Mi Sun;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.3
    • /
    • pp.6-9
    • /
    • 2013
  • Cognitive Radio is an intelligent interference avoidance idle spectrum communication system for your environment and actively determine the frequency bandwidth recycling by sharing the spectrum in a way that maximizes the efficiency of radio resource technology. At this time, this does not cause interference to the PU spectrum sensing technology is important. If you can choose, depending on the state of the channel spectrum sensing algorithm will be more efficient sensing. Matched filter detection system model that reflects the individual sensing through a fuzzy controller in this paper, energy detection and self-correlation detection are proposed and analyzed.

An Radiological Assessment Resulting from Accident during Transportation of Irradiated PWR Fuel (경수로형 조사후핵연료의 수송중 사고결과 평가)

  • Yoon, Yeo-Chang;Ha, Chung-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.13 no.2
    • /
    • pp.88-94
    • /
    • 1988
  • The radiological impacts due to transportation of irradiated PWR fuel by truck were assessed for incident-free and accident conditions with. the computer code INTERTRAN. The resulting collective doses exposure to different subgroups of the public and of the workers were determined. Resulting collective doses for crewman and the public sharing the transport link and living in a corridor on either side of the route are small. All attempts to quantify the risk from the transport suffer from a lack of good input data. It is in these areas that the most important advances can be made.

  • PDF

A Study on Efficiency Improvement of Power Conversion System for Escalator (에스컬레이터용 전력변환장치 효율 개선에 관한 연구)

  • Cho, Su-Eog
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.6
    • /
    • pp.525-529
    • /
    • 2016
  • In the case of a motor system that converts electrical energy into mechanical energy, the region of the motor and that of the generator coexists. In the case of an escalator, the ascending escalator is operated by the motor, whereas the descending escalator is operated by the generator according to the load. To evaluate the proposed method, this study reduces the power of the ascending escalator up to approximately 35% by sharing the regeneration power of the descending escalator. The loss of transfer power nearly exists in the case of the proposed method. Furthermore, the lifetime of the DC link condenser can be extended because it is connected in parallel, thus leading to a twofold increase in capacity.

Game Theory-based Bi-Level Pricing Scheme for Smart Grid Scheduling Control Algorithm

  • Park, Youngjae;Kim, Sungwook
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.484-492
    • /
    • 2016
  • Smart grid (SG) technology is now elevating the conventional power grid system to one that functions more cooperatively, responsively, and economically. When applied in an SG the demand side management (DSM) technique can improve its reliability by dynamically changing electricity consumption or rescheduling it. In this paper, we propose a new SG scheduling scheme that uses the DSM technique. To achieve effective SG management, we adopt a mixed pricing strategy based on the Rubinstein-Stahl bargaining game and a repeated game model. The proposed game-based pricing strategy provides energy routing for effective energy sharing and allows consumers to make informed decisions regarding their power consumption. Our approach can encourage consumers to schedule their power consumption profiles independently while minimizing their payment and the peak-to-average ratio (PAR). Through a simulation study, it is demonstrated that the proposed scheme can obtain a better performance than other existing schemes in terms of power consumption, price, average payment, etc.

Intelligent Energy Saving Power System Controller for Telecom DC Power Plant (통신교환기용 DC 전원시스템을 위한 에너지 절약형 지능제어기)

  • Kim, I.J.;Gu, S.W.;Kim, T.Y.;Choi, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.323-325
    • /
    • 1996
  • The design of Intelligent Energy Saving Power System Controller (IESPSC) for Telecom DC power plants is proposed and presented in this paper. From the past experience. rectifiers for Telecom DC power plants have been operated inefficiently at light loads. IESPSC offers "novel load sharing" approach based on the knowledge of each unit's efficiency of paralleled rectifiers. Neural networks is used for identifying each rectifier's efficiency characteristic curve corresponding to load currents, which is in turn utilized to produce a system efficiency close to the maximum under all operating conditions. In addition, by limiting the number of operating units to the minimum while maintaining high efficiency at the determined loads, a drastic savings in operating cost can be achieved.

  • PDF

A Cooperative Multiagent System for Enhancing Smart Grid Performance

  • Mohammad A Obeidat
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.2
    • /
    • pp.164-172
    • /
    • 2023
  • Sharing power data between electrical power grids is crucial in energy management. The multi-agent approach has been applied in various applications to improve the development of complex systems by making them both independent and collaborative. The smart grid is one of the most intricate systems that requires a higher level of independence, reliability, protection, and adaptability to user requests. In this paper, a multi-agent system is utilized to share knowledge and tackle challenges in smart grids. The shared information is used to make decisions that aid in power distribution management within the grid and with other networks. The proposed multi-agent mechanism improves the reliability of the power system by providing the necessary information at critical times. The results indicate that the multi-agent system operates efficiently and promptly, making it a highly promising candidate for smart grid management.

A Development and Implementation of Facility Sharing Platform for Wind Power Plant (풍력 설비 공유 플랫폼 개발 및 구현)

  • Cho, Soohyung;Kim, Daehwan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.141-143
    • /
    • 2022
  • 풍력 설비 공유 플랫폼은 풍력발전에 참여하고 있는 기업들간에 보유하고 있는 설비나 부품에 대한 정보를 공유하도록 지원해 주는 플랫폼이다. 이를 위해 내 설비관리, 고장이력 관리, 설비공개 현황, 내 계약 현황 기능을 구현하였다. 풍력 설비 공유 플랫폼을 통해 발전소 설비에 문제가 발생했을 시, 주변의 다른 발전소에서 보유하고 있는 예비 부품을 빠르게 공급받을 수 있도록 지원해 줄 뿐만 아니라, 고장이 빈번한 부품에 대한 구매정보, 고장이력정보 등을 사전에 구축 할 수 있도록 관리해줌으로써 추후 문제 발생 시 빠른 대응이 가능하다.

Smooth Torque Speed Characteristic of Switched Reluctance Motors

  • Zeng, Hui;Chen, Zhe;Chen, Hao
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.341-350
    • /
    • 2014
  • The torque ripple of switched reluctance motors (SRMs) is the main disadvantage that limits the industrial application of these motors. Although several methods for smooth-toque operation (STO) have been proposed, STO works well only within a certain torque and speed range because of the constraints of the supply voltage and peak current. Based on previous work that sought to expand the STO range, a scheme is developed in this study to determine the maximum smooth torque range at each speed. The relationship between the maximum smooth torque and speed is defined as the smooth torque speed characteristics (STSC), a concept similar to torque speed characteristics (TSC). STSC can be utilized to evaluate torque utilization by comparing it with TSC. Thus, the concept benefits the special design of SRMs, especially for the generation of smooth torque. Furthermore, the torque sharing function (TSF) derived from the proposed method can be applied to STO, which produces a higher smooth torque over a wider speed range in contrast to four typical TSFs. TSimulation and experimental results verify the proposed method.

A Study on Optimal Electric Load Distribution and Generator Operating Mode Using Dynamic Programming (동적계획법을 이용한 발전기의 운전모드 및 최적부하 배분에 관한 연구)

  • H-H Yoo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.313-319
    • /
    • 2002
  • Since the oil crisis in 1970, a great deal of effort has been made to develop automatic electric load sharing systems as a part of the efforts to save energy. A large scale electric generating system composes more than two generators whose characteristics may be different. When such a system is operated individually or in parallel, the lagrange multiplier's method has difficulty in achieving optimal load distribution because generators usually have the limitations of the operating range with inequality constraints. Therefore, a suitable operating mode of generators has to be decided according to the selection of the generators to meet electric power requirements at the minimum cost. In this study, a method which solves the optimal electric load distribution problem using the dynamic programming technique is proposed. This study also shows that the dynamic programming method has an advantage in dealing with the optimal load distribution problem under the limitations of the operating range with inequality constraints including generator operation mode. In this study, generator operating cost curve of second order equation by shop trial test results of diesel generators are used. The results indicate that the proposed method can be applied to the ship's electric generating system.

A High Efficiency Two-stage Inverter for Photovoltaic Grid-connected Generation Systems

  • Liu, Jiang;Cheng, Shanmei;Shen, Anwen
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.200-211
    • /
    • 2017
  • Conventional boost-full-bridge and boost-hybrid-bridge two-stage inverters are widely applied in order to adapt to the wide dc input voltage range of photovoltaic arrays. However, the efficiency of the conventional topology is not fully optimized because additional switching losses are generated in the voltage conversion so that the input voltage rises and then falls. Moreover, the electrolytic capacitors in a dc-link lead to a larger volume combined with increases in both weight and cost. This paper proposes a higher efficiency inverter with time-sharing synchronous modulation. The energy transmission paths, wheeling branches and switching losses for the high-frequency switches are optimized so that the overall efficiency is greatly improved. In this paper, a contrastive analysis of the component losses for the conventional and proposed inverter topologies is carried out in MATLAB. Finally, the high-efficiency under different switching frequencies and different input voltages is verified by a 3 kW prototype.