• Title/Summary/Keyword: energy scanning method

Search Result 657, Processing Time 0.023 seconds

Study on the screening method for determination of heavy metals in cellular phone for the restrictions on the use of certain hazardous substances (RoHS) (유해물질 규제법(RoHS)에 따른 휴대폰 내의 중금속 함유량 측정을 위한 스크리닝법 연구)

  • Kim, Y.H.;Lee, J.S.;Lim, H.B.
    • Analytical Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.1-14
    • /
    • 2010
  • It is of importance that all countries in worldwide, including EU and China, have adopted the Restrictions on the use of certain Hazardous Substances (RoHS) for all electronics. IEC62321 document, which was published by the International Electronics Committee (IEC) can have conflicts with the standards in the market. On the contrary Publicly Accessible Specification (PAS) for sampling published by IEC TC111 can be adopted for complementary application. In this work, we tried to find a route to disassemble and disjoint cellular phone sample, based on PAS and compare the screening methods available in the market. For this work, the cellular phone produced in 2001, before the regulation was born, was chosen for better detection. Although X-ray Fluorescence (XRF) showed excellent performance for screening, fast and easy handling, it can give information on the surface, not the bulk, and have some limitations due to significant matrix interference and lack of variety of standards for quantification. It means that screening with XRF sometimes requires supplementary tool. There are several techniques available in the market of analytical instruments. Laser ablation (LA) ICP-MS, energy dispersive (ED) XRF and scanning electron microscope (SEM)-energy dispersive X-ray (EDX) were demonstrated for screening a cellular phone. For quantitative determination, graphite furnace atomic absorption spectrometry (GF-AAS) was employed. Experimental results for Pb in a battery showed large difference in analytical results in between XRF and GF-AAS, i.e., 0.92% and 5.67%, respectively. In addition, the standard deviation of XRF was extremely large in the range of 23-168%, compared with that in the range of 1.9-92.3% for LA-ICP-MS. In conclusion, GF-AAS was required for quantitative analysis although EDX was used for screening. In this work, it was proved that LA-ICP-MS can be used as a screening method for fast analysis to determine hazardous elements in electrical products.

Measurements of Dissociation Enthalpy for Simple Gas Hydrates Using High Pressure Differential Scanning Calorimetry (고압 시차 주사 열량계를 이용한 단일 객체 가스 하이드레이트의 해리 엔탈피 측정)

  • Lee, Seungmin;Park, Sungwon;Lee, Youngjun;Kim, Yunju;Lee, Ju Dong;Lee, Jaehyoung;Seo, Yongwon
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.666-671
    • /
    • 2012
  • Gas hydrates are inclusion compounds formed when small-sized guest molecules are incorporated into the well defined cages made up of hydrogen bonded water molecules. Since large masses of natural gas hydrates exist in permafrost regions or beneath deep oceans, these naturally occurring gas hydrates in the earth containing mostly $CH_4$ are regarded as future energy resources. The heat of dissociation is one of the most important thermal properties in exploiting natural gas hydrates. The accurate and direct method to measure the dissociation enthalpies of gas hydrates is to use a calorimeter. In this study, the high pressure micro DSC (Differential Scanning Calorimeter) was used to measure the dissociation enthalpies of methane, ethane, and propane hydrates. The accuracy and repeatability of the data obtained from the DSC was confirmed by measuring the dissociation enthalpy of ice. The dissociation enthalpies of methane, ethane, and propane hydrates were found to be 54.2, 73.8, and 127.7 kJ/mol-gas, respectively. For each gas hydrate, at given pressures the dissociation temperatures which were obtained in the process of enthalpy measurement were compared with three-phase (hydrate (H) - liquid water (Lw) - vapor (V)) equilibrium data in the literature and found to be in good agreement with literature values.

Effect of Gamma Energy of Positron Emission Radionuclide on X-Ray CT Image (양전자 방출 핵종(18F)의 감마에너지가 X선 CT영상에 미치는 영향)

  • Kim, Gha-Jung;Bae, Seok-Hwan;Kim, Ki-Jin;Oh, Hye-Kyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4418-4424
    • /
    • 2011
  • This study is aimed to assess the effect of the gamma ray of 511keV energy which is emitted from phantom where the positron emission radionuclide was injected on X-ray CT image. As a scanning method, the CT number and pixel value of the reference image where water was injected(0 mCi), and those acquired by changing the capacity of 18F(Fluorine), positron emission radionuclide, into 1 mCi, 2 mCi, 5 mCi, and 10 mCi were measured. As a result of measuring the CT number(HU) of the phantom image where the positron emission radionuclide($^{18}F$) was injected, there were reference water ($-7.58{\pm}0.66$ HU), 1 mCi($-9.85{\pm}0.50$ HU), 2 mCi($-10.27{\pm}0.21$ HU), 5 mCi($-11.31{\pm}0.66$ HU), and 10 mCi($-13.47{\pm}0.38$ HU). Compared with the image where it was filled with water, there was a reduction of 5.89 Hu in 10 mCi, 3.73 in 5 mCi, 2.69 HU in 2 mCi, and 2 HU in 1 mCi. As for the pixel value of the phantom image, there were reference water ($-2.70{\pm}0.75$), 1 mCi($-4.72{\pm}0.58$), 2 mCi($-6.01{\pm}0.78$), 5 mCi($-6.10{\pm}0.84$), and 10 mCi($-8.20{\pm}0.60$). Compared with the reference image, there was a reduction of 5.50 in 10 mCi, 3.40 in 5 mCi, 3.10 in 2 mCi, and 2.02 in 1 mCi. Through this experiment, it was indicated that, with the increase in the dose of the positron emission radionuclide($^{18}F$), the CT number and the pixel value of the image reduced proportionally, and the width of reduction showed a similar value, too. Accordingly, according to the degree of change in X-ray CT image due to the positron emission radionuclide in the quality control item of PET/CT, the proper standard should be established and it should be periodically managed.

A Mineralogical and Gemological Studies for the Enhancement of Tanzania Ruby by Heat Treatment (탄자니아산 루비의 열처리에 의한 보석·광물학적 품질개선 연구)

  • Kim, Seon-Ok;Wang, Sookyun;Oh, Sul-Mi;Park, Hee Yul;Park, Maeng-Eon
    • Economic and Environmental Geology
    • /
    • v.47 no.6
    • /
    • pp.563-569
    • /
    • 2014
  • Ruby is one of the most favor colored gem, for beautiful red tone, be high in scarcity value. However, rubies with high quality are produced in restricted regions, such as in Thailand, Sri Lanka, Myanmar, and Tanzania etc., and they have been gradually exhausted by mining for a long period. Therefore, improving qualities of low level rubies with various treatments is arising an alternative way to obtain better rubies. Gemological and mineralogical properties of the natural ruby from Tanzanian were studied with heat treatments. Those characteristics were compared between only heat and adding flux materials under heating. Tanzanian raw rubies were applied a heat treatment ($1,600^{\circ}C$ for 6 hours). However, chromameter and UV-Vis analyses found that a simple heat treatment is inappropriated for the Tanzanian ruby. Although $Cr^{3+}$ containing for red color in the ruby increased with heat treatment, the ruby displays dark medium red because of Fe in the ruby as a form of $Fe_2O_3$. The low transparency after heat treatment is attributed to the recrystallization of $SiO_2$ which has a low melting point. Chromameter confirmed adding Pb-containing flux under heating greatly improves the clarity and color of Tanzanian rubies with micro-fractures and cavities on the surface. EMPA results show that Pb as an additive fills the cavities and cracks on raw Tanzanian rubies during the heat treatment. As a rewult of it, the quality of the Tanzanian ruby raw dramatically improved. These results indicate that the heat treatment with an additive (Pb in this study) is an effective way to obtain better quality of the Tanzanian ruby. Consequently, this study suggests a suitable method to improve the properties of the Tanzanina ruby. The result of this study would provide useful information to upgrade the qualities of similar gem stones such as corundum and sapphire.

Study on Iron-making and Manufacturing Technology of Iron Swords with Ring Pommel Excavated in Ipbuk-dong, Suwon (수원 입북동 출토 철제환두도의 제철과 제작기술 연구)

  • Kim, Soo-Ki
    • Journal of Conservation Science
    • /
    • v.32 no.4
    • /
    • pp.579-588
    • /
    • 2016
  • This study analyzed nonmetallic inclusions in iron swords with a ring pommel excavated in the Ipbuk-dong, Suwon. Scanning electron microscopy with energy dispersive spectroscopy(SEM-EDS) was used to estimate the iron-making temperature, and we compared the oxide with $SiO_2$ to investigate the heat-treatment technology in the production of iron swords with a ring pommel by investigating the artificial insertion of a slag former and the metallurgical structure. From the wustite observed in most of the specimens, it is judged that these swords were produced by heating and forging iron smelted at a low temperature using the solid reduction method. In addition, judging from the partial presence of $P_2O_5$, it is assumed that they were smelted directly with natural ore, not calcined. From the ratios of $CaO/SiO_2$ and $TiO_2/SiO_2$, it is judged that the raw material for iron-making was iron ore and that a calcareous slag former was not artificially inserted. The structure of the blade part on the front end was pure iron. From the high carbon content of the blade part on the ring pommel and the formation of a martensitic structure and pearlite colony, it is judged that they were tempered after carburizing and that the back, handle part, and ring pommel were unintentionally carburized. Judging from the structure of these specimens, it was noted that they were produced by applying artificial partial heat-treatment technology. This study attempted to present a more scientific analysis by using the method of interpretation through component analysis of nonmetallic inclusions appearing in one relic by the ratio of the oxide divided by $SiO_2$. It is judged that reinterpreting the arguments by the results of the existing analysis and research in this way can obtain different interpretations.

Catalytic Combustion of Methane over $AMnAl_{11}O_{19}$(A=La, Sr, Ba) and $CeO_2/LaAMnAl_{11}O_{19}$ ($AMnAl_{11}O_{19}$(A=La, Sr, Ba) 및 $CeO_2/LaAMnAl_{11}O_{19}$를 이용한 메탄의 촉매 연소)

  • Kim, Seongmin;Lee, Joon Yeob;Cho, In-Ho;Lee, Dae-Won;Lee, Kwan-Young
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.633-638
    • /
    • 2011
  • Mn substituted La, Sr or Ba-hexaaluminate were prepared by $(NH_4)_2CO_3$ co-precipitate method and calcined at $1,200^{\circ}C$ for 5 h. Catalysts were characterized by X-ray diffraction and $N_2$ physisorption and scanning electron microscope (SEM). Compared to $SrMnAl_{11}O_{19}$ and $BaMnAl_{11}O_{19}$, $LaMnAl_{11}O_{19}$ in which La located at mirror plane showed better crystallinity and high surface area, 13 $m^2/g$. $LaMnAl_{11}O_{19}$ revealed well developed plate-like structure which is characteristic structure of hexaaluminate. The catalytic activity of methane combustion increased in the following order: $LaMnAl_{11}O_{19}$ > $SrMnAl_{11}O_{19}$ > $BaMnAl_{11}O_{19}$ and was dependent on surface area of catalysts. 60 wt% $CeO_2/LaMnAl_{11}O_{19}$ calcined at $700^{\circ}C$ showed enhanced methane activity and methane was oxidized completely at low temperature ($700^{\circ}C$). It was confirmed that addition of ceria seems to be effective for the low and middle temperature combustion of methane. But, after calcination at high temperature of $1,200^{\circ}C$, it lost the promoting effect of ceria due to increase of ceria particle size and it had a limit to applying to the high temperature catalytic combustion.

Mineralogy and Biogeochemistry of Intertidal Flat Sediment, Muan, Chonnam, Korea (전남 무안 갯벌 퇴적물에 관한 광물학적 및 생지화학적 연구)

  • Park, Byung-No;Lee, Je-Hyun;Oh, Jong-Min;Lee, Seuug-Hee;Han, Ji-Hee;Kim, Yu-Mi;Seo, Hyun-Hee;Roh, Yul
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.1 s.51
    • /
    • pp.47-60
    • /
    • 2007
  • While sedimentological researches on Western coastal tidal flats of Korea have been much pelformed previously, mineralogical and biogeochemical studies are beginning to be studied. The objectives of this study were to investigate mineralogical characteritics of the inter-tidal flat sediments and to explore phase transformation of iron(oxyhydr)oxides and biomineralization by metal-reducing bacteria enriched from the inter-tidal flat sediments from Muan, Jeollanam-do, Korea. Inter-tidal flat sediment samples were collected in Chungkye-myun and Haeje-myun, Muan-gun, Jeollanam-do. Particle size analyses were performed using the pipette method and sedimentation method. The separates including sand, silt and clay fractions were examined by scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), and X-ray diffiaction (XRD). After enriching the metal-.educing bacteria from the into,-tidal flat sediments, the bacteria were used to study phase transformation of the synthesized iron (oxyhydr)oxides and iron biomineralization using lactate or glucose as the electron donors and Fe(III)-containing iron oxides as the electron accepters. Mineralogical studies showed that the sediments of tidal flats in Chung]rye-myun and Haeje-myun consist of quartz, plagioclase, microcline, biotite, kaolinite and illite. Biogeochemical researches showed that the metal-reducing bacteria enriched from the inter-tidal flat sediments reduced reddish brown akaganeite and mineralized nanometer-sized black magnetite. The bacteria also reduced the reddish brown ferrihydrite into black amorphous phases and reduced the yellowish goethite into greenish with formation of nm-sized phases. These results indicate that microbial Fe(III) reduction may play one of important roles in iron and carbon biogeochemistry as well as iron biomineralization in subsurface environments.