• Title/Summary/Keyword: energy saving control

Search Result 705, Processing Time 0.026 seconds

Study on the energy-saving constant temperature and humidity machine operating characteristics (에너지 절감형 항온항습기 운전 특성에 관한 연구)

  • Cha, Insu;Ha, Minho;Jung, Gyeonghwan
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.27-33
    • /
    • 2016
  • The heat recovery system that was applied in this study, is the energy-saving type that can produce the maximum cooling capacity less power in use. In order to have a more precise control function the temperature and humidity of the constant temperature and humidity machine, control algorithm is applied to designed a fuzzy PID controller, and the outside air compensation device (air-cooled) demonstrated excellent ability to dehumidify the moisture, $-20^{\circ}C$ in winter. High efficiency and the low-noise type sirocco fan operate quitely and designed to fit the bottom-up and top-down in accordance with the characteristics of equipment. as a result of experiment data, the conversion efficiency is 95% or more, power recovery time is within 5sec, stop delay time is within 30sec, pump down time is 10sec, pump delay time is 5sec, heating delay time is 5sec, temperature deviation is ${\pm}2^{\circ}C$ (cooling deviation: $2^{\circ}C$, Heating deviation : $2^{\circ}C$), humidity deviation is a ${\pm}5%$ (humidification deviation 3.0%, dehumidification deviation 3.0%). Recently, ubiquitous technology is important. so, the constant temperature and humidity machine designed to be able to remotely control to via the mobile phone, and more scalable to support MMI software and automatic interface. Further, the life of the parts and equipment is extended by the failure.

Implementation of Electricity Management System based on the Wireless ICT (무선 ICT기반의 전력관리시스템 구현)

  • Kim, Min-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.123-129
    • /
    • 2014
  • This paper suggests that it provides a electricity management system for wasting electricity, from power demand growth environments. This Energy management system based on ICT(Information & Communication Technology) can control Smart Power Outlet connecting to this system with Web Browser and Android phone, anytime, anywhere. Through analysis of acquisition data from them, this proposed system can monitor and control power consumption efficiently. This system was organized mesh network of Smart Power Outlet, gateway by wireless Zigbee, and ESS(Energy Saving System) by TCP/IP beyond existing limit of communication distance and space.

Sensor Node Control Considering Energy-Efficiency in Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율성을 고려한 센서 노드 제어)

  • Park, Hee-Dong
    • Journal of Digital Convergence
    • /
    • v.12 no.2
    • /
    • pp.271-276
    • /
    • 2014
  • The life-time and performance of a wireless sensor network is closely related to energy-efficiency of sensor nodes. In this paper, to increase energy-efficiency, each sensor node operates in one of three operational modes which are normal, power-saving, and inactive. In normal mode sensor nodes sense and transmit data with normal period, whereas sensor nodes in power-saving mode have three-times longer period. In inactive mode, sensor nodes do not sense and transmit any data, which makes the energy consumption to be minimized. Plus, the proposed algorithm can avoid unnecessary energy consumption by preventing transmitting duplicate sensed data. We implemented and simulated the proposed algorithm using Tiny OS based ZigbeX platfom and NS-2, respectively. Performance evaluation results show that the proposed algorithm can prolong sensor networks' lifespan by efficiently reducing energy consumption and its standard deviation of all sensor nodes.

Minimization of consumption energy for a manipulator with nonlinear friction in PPT motion

  • Izumi, T.;Takase, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.95-99
    • /
    • 1994
  • Robot engineering is developed mainly in the field of intelligibility such as a manipulation. Considering the popularization of robots in the future, however, a robot should be studied from a viewpoint of saving energy because a robot is a kind of machine with a energy conversion. This paper deals with minimizing an energy consumption of a manipulator which is driven in a point-to-point control method. When a manipulator carries a heavy payload toward gravitation or the links are de-accelerated for positioning, the motors at joints generate electric energy. Since this energy can be regenerated to the source by using a chopper, the energy consumption of a manipulator is only heat loss by an electric and a frictional resistance of the motors. The minimization of the sum of these losses is reduced Lo a two-points boundary-value problem of an non-linear differential equation. The solutions are obtained by the generalized Newton-Raphson method in this paper. The energy consumption due to the optimum angular velocity patterns of two joints of a two-links manipulator is compared with conventional velocity patterns such as quadratic and trapezoid.

  • PDF

A Study on the Application of the Optimal Control System for Heat Source and HVAC System (열원 및 공조설비의 최적제어시스템 현장 적용성에 관한 연구)

  • Baek, Seung-Jae;Kim, Jin;Ahn, Byung-Cheon;Song, Jae-Yeob
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1014-1019
    • /
    • 2009
  • The optimal control system for heat source and HVAC system has been developed for minimizing energy consumption while maintaining the comfort of indoor thermal environment in terms of the environmental variables such as time varying indoor load and outdoor temperatures. The optimal set-points of control parameters are supply air temperature and chilled or hot water temperatures. The optimal control study has been implemented for biosafety laboratory by using TRNSYS simulation program in order to investigate energy performance for heat source and HVAC system.

  • PDF

Analysis of Simulation of Daylight and Experiment for Determining on Effective Dimming Ratio (효과적인 조광제어시스템 적용을 위한 주광시뮬레이션과 실험데이터 분석)

  • Kim, Ga-Young;Kim, Yu-Sin;Choi, An-Seop
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • This study proposes to increase the energy-saving effects by reducing excessive intensity of radiation of artificial lighting through analyzing daylight incident. A photosensor sends amounts of detected luminous flux to digital control unit(DCU) as a signal and then, it can decide dimming ratios, received a proper dimming signal from DCU. Generally it is effective to control artificial lighting with the different control ratio of each zone by setting a photosensor as same number and rows as artificial lighting. However, it is ineffective to do in initial costs of systems aspect in offices. As a result of grasping the distribution of daylight previously and analyzing daylight and dimming data, we can dim different dimming ratios to each zone of artificial lighting by a single photosensor.

Prediction of Contrast and Lighting Energy Saivings in a Small Office Space according to Daylight Conditions (소규모 사무실공간에서 주광조건에 따른 대비효과 및 조명에너지 절약예측)

  • Kim, Soo-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.4
    • /
    • pp.35-43
    • /
    • 2004
  • Illuminance and luminous levels in a small office space due to daylight were calculated to analyze the impact of daylight on contrast and lighting energy savings. Computer simulations were performed for four blind conditions under a clear sky condition. The blind conditions significantly impacted the illuminance an4 luminance level. Visual performance scores were calculated according to the transfer function that uses absolute contrast between target and background surface. The blind condition that had 45 tilted angle toward ground provided good contrast and performance scores. Using a control algorithm of an automated daylight dimming control system lighting energy sayings were predicted. For all blind conditions minimum lighting energy was consumed.

Optimized slat angle control algorithm prediction of venetian blind depending on window orientation for energy saving (건물에너지 저감을 위한 향별 슬랫형 블라인드의 최적각도 제어 알고리즘 산출)

  • Kwon, Hyuk-Ju;Lee, Keum-Ho;Lee, Kwang
    • KIEAE Journal
    • /
    • v.17 no.3
    • /
    • pp.99-106
    • /
    • 2017
  • Purpose: Most modern office buildings adopt the curtain wall system in order to provide occupants with the sense of openness and high-technology, which requires large window area. As a result, the amount of solar radiation increases, negatively affecting cooling load during the summer and increasing energy costs. However, the performance of window itself is not sufficiently controllable parameter to control thermal comfort and solar radiation. Therefore, a shading device such as venetian blind is required to control them and thus a variety of studies have been performed thus far. So, the purpose of this study is to improve the performance of blind through the development of blind control algorithm. Method: Among various input variables for the control of venetian blinds, the vertical solar radiation has been selected in this study as the primary input variable and the optimal control algorithm for venetian blinds were developed for each window orientation. Result: The developed optimal control algorithm has a positive effect on building energy savings.

A 3-Step Speed Control for Minimizing Energy Consumption for Battery-Powered Wheeled Mobile Robots (배터리로 구동되는 이동 로봇의 에너지 소모 최소화를 위한 3-구간 속도 제어)

  • Kim Byung-Kook;Kim Chong-Hui
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.208-220
    • /
    • 2006
  • Energy of wheeled mobile robot is usually supplied by batteries. In order to extend operation time of mobile robots, it is necessary to minimize the energy consumption. The energy is dissipated mostly in the motors, which strongly depends on the velocity profile. This paper investigates various 3-step (acceleration - cruise - deceleration) speed control methods to minimize a new energy object function which considers the practical energy consumption dissipated in motors related to motor control input, velocity profile, and motor dynamics. We performed an analysis on the energy consumption various velocity profile patterns generated by standard control input such as step input, ramp input, parabolic input, and exponential input. Based on these standard control inputs, we analyzed the six 3-step velocity profile patterns: E-C-E, P-C-P, R-C-R, S-C-S, R-C-S, and S-C-R (S means a step control input, R means a ramp control input, P means a parabolic control input, and E means an exponential control input, C means a constant cruise velocity), and suggested an efficient iterative search algorithm with binary search which can find the numerical solution quickly. We performed various computer simulations to show the performance of the energy-optimal 3-step speed control in comparison with a conventional 3-step speed control with a reasonable constant acceleration as a benchmark. Simulation results show that the E-C-E is the most energy efficient 3-step velocity profile pattern, which enables wheeled mobile robot to extend working time up to 50%.

Experimental Study on Optimal Operation Strategies for Energy Saving in Building Central Cooling System (건물 중앙냉방시스템의 에너지절감을 위한 최적운전 방안에 관한 실험적 연구)

  • Hwang, Jin-Won;Ahn, Byung-Cheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4610-4615
    • /
    • 2013
  • In this study, optimal operation strategies to save the electric energy and power price in the building central cooling system is researched by experiments. The optimal strategies of demand response control and outdoor temperature reset control algorithms are applied by consideration the electric energy and power price according to the energy consumption characteristics. The suggested optimal control method shows better responses in the power price and energy consumption in comparison with the conventional one and saves energy consumption by 9.5% and electronic price by 15.7%, respectively.