• Title/Summary/Keyword: energy ratio(efficiency)

Search Result 1,239, Processing Time 0.032 seconds

Multi-level Inverter for the Excitation Control of an SRM (SRM의 여자제어를 위한 멀티레벨 인버터)

  • 이상훈;박성준;안진우
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.4
    • /
    • pp.161-161
    • /
    • 2003
  • The applications of SRM(Switched Reluctance motor) are dramatically increasing due to a simple mechanical structure, a high efficiency and a high speed drive characteristics. Energy recovery in the regenerative region is very important when SRM is used in traction drive. This is to reduce energy loss during mechanical braking and/or to have a high efficiency drive. To control excitation voltage during motoring and regenerating voltage in the generator operation in the SRM, multi-level voltage control is effective. This paper suggests multi-level inverter which is useful for motoring and regenerative operation. The proposed method is verified through simulations and experiments.

LLC Resonant and Synchronous Buck Converter Based High Efficiency Battery Charger for Energy Storage Systems (에너지 저장 시스템을 위한 LLC/동기 벅컨버터 기반 고효율 배터리 충방전기 설계)

  • Lee, Taeyeong;Lee, Il-Oun;Cho, Younghoon;Kim, Hangoo;Cho, Junseok;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.15-16
    • /
    • 2016
  • This paper proposes an isolated DCDC converter that consists of unregulated LLC resonant converter and non-isolated synchronous buck converter for battery charger of energy storage systems application. The unregulated converter operates as transformer with fixed duty ratio and switching frequency. The synchronous buck converter is installed in the output of the LLC resonant converter. And the converter charges and discharges the battery by controlling a current of battery. The proposed converter can get the high efficiency by separating function. This paper explains design of an unregulated converter and synchronous converter.

  • PDF

A Study on the Organic Rankine Cycle Using R245fa (냉매(R245fa)를 이용한 유기랭킨 사이클에 관한 연구)

  • Cho, Soo-Yong;Cho, Chong-Hyun;Kim, Jinhan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.3
    • /
    • pp.10-17
    • /
    • 2013
  • The organic Rankine cycle has been widely used to convert the renewable energy such as the solar energy, the geothermal energy, or the waste energy etc., to the electric power. Some previous studies focused to find what kind of refrigerant would be a best working fluid for the organic Rankine cycle. In this study, R245fa was chosen to the working fluid, and the cycle analysis was conducted for the output power of 30kW or less. In addition, properties (temperature, pressure, entropy, and enthalpy etc.) of the working fluid on the cycle were predicted when the turbine output power was controlled by adjusting the mass flowrate. The configuration of the turbine was a radial-type and the supersonic nozzles were applied as the stator. So, the turbine was operated in partial admission. The turbine efficiency and the optimum velocity ratio were considered in the cycle analysis for the low partial admission rate. The computed results show that the system efficiency is affected by the partial admission rate more than the temperature of the evaporator.

A Study on Combustion and Emission Characteristics of Diesel-DME Blended Fuels in D.I Compression-Ignition Engine (직접분사식 압축착화엔진에서 Diesel-DME 혼합연료의 연소 및 배기특성에 관한 연구)

  • Jeong, Jaehoon;Lim, Ocktaeck;Jeon, Jong Up;Lee, Sangwook;Pyo, Youngduck;Lee, Youngjae;Suh, Hocheol
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.530-537
    • /
    • 2012
  • This work experimentally investigates that Diesel-DME blended fuel influences combustion characteristics and emissions (NOx, CO, HC, smoke) in a single-cylinder DI diesel engine. Diesel is used as a main fuel and DME is blended for the use of its quick evaporating characteristics. Diesel and DME are blended by the method of weight ratio. Weight ratios for Diesel and DME are 95:5 and 90:10 respectively and the both ratios have been used altogether in blended fuel. The experiments are conducted in this study single cylinder engine is equipped with common rail and injection pressure is 700 bar at 1200 rpm. The amount of injected fuels is adjusted to obtain the fixed input calorie value as 972.2 J/cycle in order to compare with the fuel conditions. DME is compressed to 15 bar by using nitrogen gas thus it can be maintained the liquid phase. In this study, different system compared others paper is common rail system, also there is combustion and emission about compared DME and diesel fuel. It is expected to be utilized about blended fuel.

COD and BOD Removal of Artificial Municipal Wastewater by a Column filled with Zeolite (제올라이트 칼럼에 의한 인공생활하수의 COD 및 BOD 제거에 관한 연구)

  • Seo, Jeoung-Yoon
    • Journal of Wetlands Research
    • /
    • v.3 no.1
    • /
    • pp.75-89
    • /
    • 2001
  • Constructed wetlands were typically cost less to build and operate, and require less energy than standard mechanical treatment technology but they have similar performance to centralized wastewater treatment plants. Therefore, they were constructed especially many in rural areas, where are small villages but not industries. Accordingly, plantless column tests were performed to investigate the possibility on using zeolite as a filter medium of constructed wetland for the wastewater treatment. $COD_{cr}$ removal efficiency was 94.63% at hydraulic load $314L/m^2{\cdot}d$ and filtering hight 100cm filled with a zeolite mixture. This zeolite mixture consisted of 1 : 1 by volume of a zeolite in the diameter range of 0.5 to 1mm to a zeolite in the diameter range of 1 to 3mm. According, hydraulic load $314L/m^2{\cdot}d$ was considered as optimal. Three zeolite mixture were used to determine the optimal mixing ratio by volume of a zeolite(A) in the diameter range of 0.5 to 1mm to a zeolite(B) in the diameter range of 1 to 3mm diameter. 1 : 3, 1 : 1 and only B in A to B by volume were tested at hydraulic load $314L/m^2{\cdot}d$ and filtering hight 100cm. $COD_{cr}$ removal efficiency was more than 89% at mixing ratios of 1 : 3 and 1 : 1 in A to B. Removal efficiency was lower at the column filled with only B. Removal efficiency was better at filter medium filled with mixing ratio 1 : 1 in A to B than with the other mixing ratios. Thus, it was found that the mixture of mixing ratio 1 : 1 in A to B was appropriate for filter medium of constructed wetland. Removal efficiency was higher in down-flow than in up-flow, and $COD_{cr}$ and BOD were removed best in 20cm filter height near feeding area.

  • PDF

Analysis and Implementation of High Step-Up DC/DC Convertor with Modified Super-Lift Technique

  • Fani, Rezvan;Farshidi, Ebrahim;Adib, Ehsan;Kosarian, Abdolnabi
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.645-654
    • /
    • 2019
  • In this paper, a new high step up DC/DC converter with a modified super-lift technique is presented. The coupled inductor technique is combined with the super-lift technique to provide a tenfold or more voltage gain with a proper duty cycle and a low turn ratio. Due to a high conversion ratio, the voltage stress on the semiconductor devices is reduced. As a result, low voltage ultra-fast recovery diodes and low on resistance MOSFET can be used, which improves the reverse recovery problems and conduction losses. This converter employs a passive clamp circuit to recycle the energy stored in the leakage inductance. The proposed convertor features a high conversion ratio with a low turn ratio, low voltage stress, low reverse recovery losses, omission of the inrush currents of the switch capacitor loops, high efficiency, small volume and reduced cost. This converter is suitable for renewable energy applications. The operational principle and a steady-state analysis of the proposed converter are presented in details. A 200W, 30V input, 380V output laboratory prototype circuit is implemented to confirm the theoretical analysis.

Increased Microalgae Growth and Nutrient Removal Using Balanced N:P Ratio in Wastewater

  • Lee, Seung-Hoon;Ahn, Chi-Yong;Jo, Beom-Ho;Lee, Sang-Ah;Park, Ji-Yeon;An, Kwang-Guk;Oh, Hee-Mock
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.92-98
    • /
    • 2013
  • Microalgal cultivation using wastewater is now regarded as essential for biodiesel production, as two goals can be achieved simultaneously; that is, nutrient removal efficiency and biomass production. Therefore, this study examined the effects of carbon sources, the N:P ratio, and the hydraulic retention time (HRT) to identify the optimal conditions for nutrient removal efficiency and biomass production. The effluent from a 2nd lagoon was used to cultivate microalgae. Whereas the algal species diversity and lipid content increased with a longer HRT, the algal biomass productivity decreased. Different carbon sources also affected the algal species composition. Diatoms were dominant with an increased pH when bicarbonate was supplied. However, 2% $CO_2$ gas led to a lower pH and the dominance of filamentous green algae with a much lower biomass productivity. Among the experiments, the highest chlorophyll-a concentration and lipid productivity were obtained with the addition of phosphate up to 0.5 mg/l P, since phosphorus was in short supply compared with nitrogen. The N and P removal efficiencies were also higher with a balanced N:P ratio, based on the addition of phosphate. Thus, optimizing the N:P ratio for the dominant algae could be critical in attaining higher algal growth, lipid productivity, and nutrient removal efficiency.

Thermally Stratified Hot Water Storage (태양열의 성층축열과 주택이용에 관한 연구(성층축열))

  • Pak, Ee-Tong
    • Solar Energy
    • /
    • v.10 no.3
    • /
    • pp.3-12
    • /
    • 1990
  • This paper deals with experimental research to increase thermal storage efficiency of hot water stored in an actual storage tank for solar application. The effect of increased energy input rate due to stratification has been discussed and illustrated through experimental data, which was taken by changing dynamic and geometric parameters. Ranges of the parameters were defined for flow rate, the ratio of diameter to height of the tank and inlet-exit water temperature difference. During the heat storage, when the flow was lower, the temperature difference was larger and the ratio of diameter to height of the tank was higher, the momentum exchange decreased. As for this experiment, when the flow rate was 8 liter/min, the temperature difference was $30^{\circ}C$ and the ratio of diameter to height of the tank was 3, the momentum exchange was minimized resulting in a good thermocline and a stable stratification. In the case of using inlet ports, if the modified Richardson number was less than 0.004, full mixing occured and so unstable stratification occured, which mean that this could not be recommended as storage through thermal stratification. Using a distributor was better than using inlet ports to form a sharp thermocline and to enhance the stratification. It was possible to get storage efficiency of 95% by using the distributor, which was higher than a storage efficiency of 85% obtained by using inlet ports in same operation condition. Furthermore, if the distributor was manufactured so that the mainpipe decreases in diameter toward the dead end to maintain constant static pressure, it might be predicted that further stable stratification and higher storage efficiency are obtainable(ie:more than 95%).

  • PDF

An Experimental Study on the Performance Characteristics of a Hydrogen Fueled LPi Engine (LPi기관에서 수소첨가에 따른 성능특성에 관한 실험적연구)

  • Choi, Gyeung Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.2
    • /
    • pp.129-136
    • /
    • 2004
  • 환경문제와 석유자원의 고갈이 많은 연구자들을 기존 탄화수소연료를 대체할수 있는 재생 가능한 연료를 구하는데 많은 노력을 기울이고 있다. 수소연료는 유해배기물질이 없는 연소와 또한 연소후에 재생 가능한 물성분만 배출하는 속성으로 미래의 청정에너지로 각광을 받고 있다. 이러한 이유로 수소연료는 수송기계의 연료로도 주목을 받고 있다. 따라서 수소연료기관 개발은 21세기에도 지속적으로 진행될 것이다. 이에대한 초기연구로 기체 LPG 연료가 아닌 액체 LPG 연료를 흡기관에 분사하여 기화된 LPG 연료를 엔진으로 흡입하는 LPi엔진에 수소연료를 과급하여 엔진에 성능을 연구하고자 하였다.

A Study on the Ratio of Luminance and Energy Saving for Lighting of Schoolroom (학교 강의실 조명에 대한 에너지 절약과 균제도에 관한 연구)

  • 최홍규;최병숙;조경남;조계술;김정한;김성수;조의상;정성윤
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.135-143
    • /
    • 2000
  • This parer is the among educational environment, lighting's role is more important since it improves the visual tasks, capability of work, and it help to build both balanced mind and body. Also, since students need spend most of their time inside rather than outside, students need appropriate illuminance everyday. If optimum illuminance and distribution of luminance is properties controlled, people can decrease the fatigue of eyes, and also, people can maximize their efficiency of work. This present studying class chose of two school measured illuminance using the computer simulation improved ratio of luminance and luminance by distribution of lighting improve the economy and energy saving.

  • PDF