• Title/Summary/Keyword: energy principle

Search Result 1,032, Processing Time 0.034 seconds

Eco-Friendly Drying Technology using Superheated Steam (과열 증기 이용 친환경 건조기술)

  • Kim, Og Sin;Lee, Dong Hyun;Chun, Won Pyo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.258-273
    • /
    • 2008
  • For being recent high oil price age, the interest in superheated steam drying technology is increasing as the method to enhance the energy efficiency of drying process consuming a lot of energy. This technology uses the superheated steam as drying medium to dry the materials and has advantages that can save the energy by recycling the evaporated high-temperature steam, enhance the quality of dried products, and minimize the exhaust of environmental pollution materials. In this work, it has been introduced from general drying principle to the principle and related studies of drying technology using superheated steam, using examples of superheated steam with dryer types, and industrial applications.

Development of a Multi-Absorbing Wave Energy Converter using Pressure Coupling Principle (압력커플링을 이용한 다수개의 부표를 가진 파력발전기 개발)

  • Do, H.T.;Nguyen, M.T.;Phan, C.B.;Lee, S.Y.;Park, H.G.;Ahn, K.K.
    • Journal of Drive and Control
    • /
    • v.11 no.3
    • /
    • pp.31-40
    • /
    • 2014
  • This paper proposes a multi absorbing wave energy converter design, in which a hydrostatic transmission is used to transfer wave energy to electric energy. The most important feature of this system is its combination of the pressure coupling principle with the use of a hydraulic accumulator to eliminate the effects of wave power fluctuation; this maintains a constant speed of the hydraulic motor. Tilt motion of a floating buoy was employed as the power take-off mechanism. Furthermore, a PID controller was designed to carry out the speed control of the hydraulic motor. The design offers some advantages such as extending the life of the hydraulic components, increasing the amount of energy harvested, and stabilizing the output speed.

Design and Control of 3DOF High Precision Positioning System With Double L Type Flexure Hinge Module

  • Kim, Ki-Beom;Jeon, Seung-Jin;Hwang, Dal-Yeon;Choi, Young-Jun;Park, Suk-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2524-2528
    • /
    • 2003
  • High-precision position system is widely used in lots of fields such as semiconductor industry, biotechnology, display and other up-to-date industry field. One of the main issues is to have a long traveling range with precision. There are a few solutions. For instance, there are inchworm methods, lever principle. In this study, we use lever principle to amplify output displacement with a new mechanical amplification structure. We designed new type 3DOF stage with PZT actuator and capacitive sensor. Non-monolithic structure is suggested to obtain the convenience of assembly and modification. Driving parts are designed as modules that generate displacement amplification of each axis. Designed motion module consists of 3 flexure hinges and a PZT actuator with double L lever structure.

  • PDF

Analysis of plane frame structure using base force element method

  • Peng, Yijiang;Bai, Yaqiong;Guo, Qing
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.11-20
    • /
    • 2017
  • The base force element method (BFEM) is a new finite element method. In this paper, a degenerated 4-mid-node plane element from concave polygonal element of BFEM was proposed. The performance of this quadrilateral element with 4 mid-edge nodes in the BFEM on complementary energy principle is studied. Four examples of linear elastic analysis for plane frame structure are presented. The influence of aspect ratio of the element is analyzed. The feasibility of the 4 mid-edge node element model of BFEM on complementary energy principles researched for plane frame problems. The results using the BFEM are compared with corresponding analytical solutions and those obtained from the standard displacement finite element method. It is revealed that the BFEM has better performance compared to the displacement model in the case of large aspect ratio.

Development of an Algorithm for Searching Optimal Temperature Setpoint for Lettuce in Greenhouse Using Crop Growth Model (작물생장모델을 이용한 상추의 온실 최적설정온도 탐색 알고리즘의 개발)

  • 류관희;김기영;김희구;채희연
    • Journal of Biosystems Engineering
    • /
    • v.24 no.5
    • /
    • pp.445-452
    • /
    • 1999
  • This study was conducted to develop a searching algorithm for optimal daily temperature setpoint greenhouse. An algorithm using crop growth and energy models was developed to determine optimum crop growth environment. The results of this study were as follows: 1. Mathematical models for crop growth and energy consumption were derived to define optimal daily temperature setpoint. 2. Optimum temperature setpoint, which could maximize performance criterion, was determined by using Pontryagin maximum principle. 3. Dynamic control of daily temperature using the developed algorithm showed higher performance criterion than static control with fixed temperature setpoint. Performance criteria for dynamic control models were with simulated periodic weather data and with real weather data, increased by 48% and 60%, respectively.

  • PDF

Frame Rate Up Conversion Method Using Free-Energy Principle based Just Noticeable Difference (Free Energy Principle 기반의 Just Noticeable Difference 모델을 활용한 프레임율 향상 기법)

  • Kang, Ju-Mi;Park, Dae-Jun;Jeong, Je-Chang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.06a
    • /
    • pp.215-219
    • /
    • 2016
  • 본 논문에서는 인간의 시각적 특성을 반영한 Just Noticeable Difference (JND) 모델을 사용한 움직임 예측을 통한 프레임율 향상 기법을 제안한다. 기존의 다중 프레임 기반 움직임 예측을 통한 프레임율 향상 기법은 움직임 벡터의 정확성을 높이기 위해 다중 프레임을 사용하며, 전체 영역에 대해 같은 블록 크기와 탐색 영역으로 움직임 예측을 수행함으로써 불필요한 계산량이 많아지고 움직임 벡터의 부정확한 예측이 수행된다는 단점이 있다. 제안하는 알고리듬은 인간의 시각적 특성을 고려한 Free Energy-based Just Noticeable Difference (FEJND) 모델을 사용하여 이전 프레임과 현재 프레임만을 사용하여 영역 특성에 따른 적응적 움직임 예측을 수행하여 정확성을 높인다. 실험 결과에 따라 제안하는 알고리듬의 성능이 향상되었음을 알 수 있다.

  • PDF

A Practical Method for Estimating High-Energy X-Ray Spectra Using the Iterative Perturbation Principle of Waggener

  • Iwasaki, Akira;Matsutani, Hideya;Kubota, Mamoru;Fujimori, Akira;Suzaki, Katsumasa;Abe, Yoshinao
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.263-266
    • /
    • 2002
  • We have developed a practical method for estimating high-energy x-ray spectra using measured attenuation curves. This method is based on the iterative perturbation technique proposed by Waggener et al. The principle is to minimize the difference between the measured and calculated transmission curves. The experimental study was made using 4 MV, 10 MV, and 15 MV x-ray beams. It has been found that the spectrum varies strongly with the off-axis distance.

  • PDF

Size dependent effect on deflection and buckling analyses of porous nanocomposite plate based on nonlocal strain gradient theory

  • Khazaei, Pegah;Mohammadimehr, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.76 no.1
    • /
    • pp.27-56
    • /
    • 2020
  • In this paper, the deflection and buckling analyses of porous nano-composite piezoelectric plate reinforced by carbon nanotube (CNT) are studied. The equations of equilibrium using energy method are derived from principle of minimum total potential energy. In the research, the non-local strain gradient theory is employed to consider size dependent effect for porous nanocomposite piezoelectric plate. The effects of material length scale parameter, Eringen's nonlocal parameter, porosity coefficient and aspect ratio on the deflection and critical buckling load are investigated. The results indicate that the effect of porosity coefficient on the increase of the deflection and critical buckling load is greatly higher than the other parameters effect, and size effect including nonlocal parameter and the material length scale parameter have a lower effect on the deflection increase with respect to the porosity coefficient, respectively and vice versa for critical buckling load. Porous nanocomposites are used in various engineering fields such as aerospace, medical industries and water refinery.

A Study on the Importance Analysis of Environmentally-Friendly Planning Factors Using Analytic Hierarchy Process (계층분석법을 이용한 환경친화 계획요소의 중요도 분석에 관한 연구)

  • 류지원;김정환;정응호
    • Journal of Environmental Science International
    • /
    • v.12 no.9
    • /
    • pp.897-903
    • /
    • 2003
  • This study focuses on importance level analysis of environmentally-friendly planning factors using Analytic Hierarchy Process(AMP). This study verify different planning principle makes comparison matrix by a relative comparison value, verified consistency after yield weight to analyze more objective importance for apartment complex estate environmentally-friendly planning factor. In order to decide importance of apartment complex estate environmentally-friendly planning factors multiplying weight of verified planning principle with weight of planning factors. The results are as follows; First, importance of preservation of green tract of lands, Preparation of Biotop, Tree planting of sites, Propriety of development density high except Circulation and practical use of water. Next, valued planning factors constituent appeared to Energy efficient building plan, Rubbish recycling, thermal utilization of solar energy, Artificial tree planting of buildings etc. importantly. Finally, plan constituent that importance is underrated most appeared by Practical use of building materials and equipment, Centralization of energy and resources, Preservation of corridor etc.

Electric field strength effect on bi-stability of composite thin cylindrical shell with piezoelectric layer

  • Yaopeng Wu;Nan Zheng;Yaohuan Wu;Quan Yang
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.571-578
    • /
    • 2024
  • The bistable thin cylindrical shell is developable structure with the ability to transition between its two stable configurations. This structure offers significant potential applications due to its excellent deformability. In this paper, the composite thin cylindrical shell consisting of the composite layer and the piezoelectric layer was investigated. The material and geometric parameters of the shell were found to influence its stable characteristics. The analysis model of the composite thin cylindrical shell incorporating the piezoelectric layer was developed, and the expressions for its strain energy were derived. By applying the minimum energy principle, the impact of the electric field intensity on the bi-stable behaviors of the cylindrical shell was analyzed. The results showed that the shell exhibited the bistability only under the appropriate electric field strength. And the accuracy of the theoretical prediction was verified by simulation experiments. This study provides an important reference for the application of deployable structures.