• Title/Summary/Keyword: energy principle

Search Result 1,036, Processing Time 0.025 seconds

A Study on the Evaluation of Automatic Steering System of Ships in Folowing Seas (추사파중을 항행하는 선박의 자동조타 시스템 평가에 관한 연구)

  • 이경우;손경호
    • Journal of the Korean Institute of Navigation
    • /
    • v.25 no.4
    • /
    • pp.407-415
    • /
    • 2001
  • In the present study, irregular disturbances to ship dynamics is proposed, where irregular disturbances implying irregular wave and the fluctuating component of wind for the evaluation of automatic steering system of ship in following seas. Prediction method based on the principle of linear superposition. Irregular wave disturbances in following seas is calculated by frequency variation method. The mathematical model of each element of an automatic steering system is derived, which takes account of a few non-linear mechanisms. PD(Proportional-Derivative) controller and low-pass filter with a weather adjustment are adopted to modelling the characteristics of an autopilot. Performance index is introduced from the viewpoint of energy saving, which derived from the concept of energy loss on ship propulsion. Finally, the present methods are applied to two typical types of ship ; an ore carrier and a fishing boat. The various effects of control constants of autopilot on propulsive energy loss are investigated

  • PDF

Study on Divice for the Automatic Shut Off of Equipment Stand-by Power (자동전원 계폐장치에 관한 연구)

  • Kim, H.K.;Hyun, K.W.;Bae, J.I.;Yang, S.Y.;Park, S.T.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2626-2627
    • /
    • 1999
  • The device we have developed is the automatic shut off equipment which will reduce energy consumption when an equipment is in stand by power state. The principle for this system is when a man is moving, electricity will flow by setting a on-off light system. At night, in the stand-by power state the electric supply will be shut off immediately which will reduce energy consumption. Energy consumed by 24hour operating machines and stand-by electronic devices will be reduced by pulse signals which will give power supply when needed.

  • PDF

A Practical Approach to Mass Estimation of Loose Parts

  • Kim, Jung-Soo;Joon Lyou
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.274-277
    • /
    • 1999
  • This paper is concerned with estimating the mass of a loose part in the steam generator of a nuclear power plant. Although there is the basic principle known as “Hertz Theory”for estimating mass and energy of a spherical part impacted on an infinite flat plate, the theory is not directly applicable because real plants do not comply with the underlying ideal assumptions. (Say, the steam generator is of a cylindrical and hemisphere shape.) In this work, a practical method is developed based on the basic theory and considering amplitude and energy attenuation effects. Actually, the impact waves propagating along the plate to the sensor locations become significantly different in shape and frequency spectrum from the original waveform due to the plate and surrounding conditions, distance attenuation and damping loss. To show the validity of the present mass estimation algorithm, it has been applied to the mock-up impact test data and also to real plant data. The results show better performance comparing to the conventional Hertz schemes.

  • PDF

A First Principles Study on Nano-scale Pt Alloy Structures for Fuel Cell Catalysts (제일원리전산을 이용한 연료전지용 나노 스케일 백금 합금촉매에 대한 열역학적 구조 분석)

  • Noh, Seung-Hyo;Han, Byung-Chan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.217-221
    • /
    • 2012
  • Over the last decade, performances of low temperature fuel cells are substantially improved by developing highly active Pt-M alloy catalysts. The electrochemical stability of those catalysts, however, still does not meet the commercial grade for fuel cells to be long-term power sources of electrical vehicles. To unveil a major mechanism causing such weak durability, we extensively utilize ab-initio computations on nano-scale Pt-Co alloy catalysts and analyze thermodynamically the most stable structure as a function of compositional variation. Our results indicate that there is a certain feature governing the particle distribution of a specific alloy element on the nano-scale catalysts, which aggravates the electrochemical degradation.

  • PDF

Two rectangular elements based on analytical functions

  • Rezaiee-Pajand, Mohammad;Karimipour, Arash
    • Advances in Computational Design
    • /
    • v.5 no.2
    • /
    • pp.147-175
    • /
    • 2020
  • To achieve appropriate stresses, two new rectangular elements are presented in this study. For reaching this aim, a complementary energy functional is used within an element for the analysis of plane problems. In this energy form, the Airy stress function will be used as a functional variable. Besides, some basic analytical solutions are found for the stress functions. These trial functions are matched with each element number of degrees of freedom, which leads to a number of equations with the anonymous constants. Subsequently, according to the principle of minimum complementary energy, the unknown constants can be expressed in terms of displacements. This system can be rewritten in terms of the nodal displacement. In this way, two new hybrid-rectangular triangular elements are formulated, which have 16 and 40 degrees of freedom. To validate the outcomes, extensive numerical studies are performed. All findings clearly demonstrate accuracies of structural displacements, as well as, stresses.

A Review on New Non-hybrid Technologies to Improve Energy Efficiency of Construction Machineries (건설기계의 에너지 효율 제고를 위한 비-하이브리드 신기술에 관한 리뷰)

  • Joh, Joong Seon
    • Journal of Drive and Control
    • /
    • v.13 no.3
    • /
    • pp.53-66
    • /
    • 2016
  • New non-hybrid approaches to improve energy efficiency of construction machineries are reviewed in this paper. Hydraulic systems are classified into four classes according to Backe's classification and commercially promising new technologies are carefully chosen in each class. IMV, 3-Line CPR, Closed Circuit Displacement Control of Differential Cylinder, and Throttle-less Secondary Control are chosen as representative non-hybrid new technologies. Key principle of each technology is explained and representative references which run through each technology are selected. Advantages and weaknesses of each technology are discussed and compared from the view point of construction machinery manufacturers.

Identification of a Universal Relation between a Thermodynamic Variable and Catalytic Activities of Pyrites toward Hydrogen Evolution Reaction: Density Functional Theory Calculations (수소발생반응에 대한 Pyrites 표면 촉매 성능 예측: 밀도 범함수 이론 계산)

  • Gang, Jun-Hui;Hwang, Ji-Min;Han, Byeong-Chan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.87.1-87.1
    • /
    • 2017
  • High functional catalyst to efficiently produce clean and earth-abundant renewable fuels plays a key role in securing energy sustainability and environmental protection of our society. Hydrogen has been considered as one of the most promising energy carrier as represented by focused research works on developing catalysts for the hydrogen evolution reaction (HER) from the water hydrolysis over the last several decades. So far, however, the major catalysts are expensive transition metals. Here using first principles density functional theory (DFT) calculations we screen various pyrites for HER by identifying fundamental descriptor governing the catalytic activity. We enable to capture a strong linearity between experimentally measured exchange current density in HER and calculated adsorption energy of hydrogen atom in the pyrites. The correlation implies that there is an underlying design principle tuning the catalytic activity of HER.

  • PDF

Image Reconstruction Techniques for Radioactive Waste Assay by Tomographic Gamma Scanning Method

  • Zhang Quanhu;Kim Ki-Hong;Hong Kwon-Pyo
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.126-140
    • /
    • 2005
  • The tomographic gamma scanner (TGS) method, a further of extension of segmented gamma scanner (SGS), is most accurate and precise for assaying heterogeneous drummed nuclear radioactive waste; it is widely used in nuclear power plants and radioactive waste storages and disposal sites. The transmission and emission images are reconstructed by image reconstruction techniques. In the paper, the principle of TGS is introduced; image reconstruction techniques are discussed as well; finally, it is demonstrated that TGS method performance.

  • PDF

A study on the magnetic flux distribution of 3-phase 4-pole induction motor by finite element method (유한요소법에 의한 삼상유도전동기의 자속분포해석에 관한 연구)

  • 임달호;현동석;임태빈
    • 전기의세계
    • /
    • v.30 no.4
    • /
    • pp.219-226
    • /
    • 1981
  • The magnetic field distribution in saturable iron part of electromagnetic energy conversion divices is defined by the nonlinear quasi-Poisson enquation that is described the electromagnetic field characteristics and satisfied the natural boundary condition. The solution of this equation is obtained by minimizing an energy functional by means of trial function that defined in triangular subregion of two-dimensional field region. As a result, the accuracy of the machine design is increased by use of its solution. In this respect, this study is developed the basic theory to analyze the magnetic flux distribution in saturable iron part and air gap of induction motor that its secondary part is short circuit by the variational principle, the minimized theory of energy functional, the application of F.E.M., and treatment of computer. As theoritical data compared with the practics, the validity of the theory in this study is supported by experimental findings.

  • PDF

Spatial Stability of Monosymmetric Thin-walled Circular Arch (일축대칭 단면을 갖는 박벽 원형아치의 면외좌굴해석)

  • 김문영;민병철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.449-456
    • /
    • 1998
  • A consistent finite element formation and analytic solutions are presented for spatial stability of thin-walled circular arch. The total potential energy is derived by applying the principle of linearized virtual work and including second order terms of finite semitangential rotations. As a result the energy functional corresponding to the semitangential rotation is obtained, in which the elastic strain energy terms are considered restrained warping effects. We have obtained analytic solution for the lateral buckling of monosymmetric thin-walled curved beam subjected to pure bending or uniform compression and it's boundary conditions are simply supported. For finite element analysis, the two node cubic Hermitian polynomials are utilized as shape Auctions. In order to illustrate the accuracy of this study, parameter studies for lateral buckling problems of circular arch are presented and compared with available solutions and numerical results analyzed by the FEM using straight beam element.

  • PDF