• Title/Summary/Keyword: energy potential

Search Result 4,768, Processing Time 0.027 seconds

Development of Hybrid Excavator for Regeneration of Boom Potential Energy (작업장치 위치에너지 회생을 위한 하이브리드 굴삭기 시스템 개발)

  • Yoon, J.I.;Ahn, K.K.;Truong, D.Q.;Kang, J.M.;Kim, J.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.4
    • /
    • pp.1-8
    • /
    • 2009
  • Nowadays with the high fuel prices, the demands for energy saving and green emission of construction machinery have highly been increased without sacrifice of working performance, safety and reliability. The aim of this paper is to propose a new energy saving hybrid excavator system using an electro-hydraulic actuator driven by an electric motor/generator for the regeneration of potential energy. A 5 ton class excavator is analyzed, developed with the boom for the evaluation of the designed system. The hardware implementation is also presented in this paper. A control strategy for the hybrid excavator is proposed to operate the machine with a highest efficiency. The energy saving ability of the proposed excavator is clearly verified through simulation and experimental results in comparison with a conventional hydraulic excavator.

  • PDF

Evaluation of Agricultural Biomass Resources for Renewable Energy - Biomass from Orchards and Non-paddy Fields - (농업 부산물 바이오매스 자원의 부존특성 조사 - 과수원 및 밭작물 부산물을 중심으로 -)

  • Hong, Seong-Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.3
    • /
    • pp.85-92
    • /
    • 2004
  • Biomass is considered to be a major potential fuel and renewable resource for the future. In fact, there is high potential to produce significant amount of energy from biomass around the world. In spite of the potential, there are a few efforts in biomass utilization in this nation. In this study, elemental biomass data was obtained with respect to the amount and calorific values of agricultural residues. Rice straw and husks were not included in the evaluation due to their demand from alternative uses such as livestock feedings, bedding materials, and so forth. Dry basis high calorific values are about 4,500 kcal/kg for all the agricultural residues investigated, similar to literature data. Energy densities or unit area energy value, from pepper and sesame were significant and comparable to those of woody biomass. These elemental data for biomass resources will Provide the background of Planning and development of biomass energy Program, which is getting more feasible along with advances in energy conversion technologies such as micro gas turbines.

Revolutionizing Energy Storage: Exploring Processing Approaches and Electrochemical Performance of Metal-Organic Frameworks (MOFs) and Their Hybrids

  • Wajahat Khalid;Muhammad Ramzan Abdul Karim;Mohsin Ali Marwat
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.14-31
    • /
    • 2024
  • The text highlights the growing need for eco-friendly energy storage and the potential of metal-organic frameworks (MOFs) to address this demand. Despite their promise, challenges in MOF-based energy storage include stability, reproducible synthesis, cost-effectiveness, and scalability. Recent progress in supercapacitor materials, particularly over the last decade, has aimed to overcome these challenges. The review focuses on the morphological characteristics and synthesis methods of MOFs used in supercapacitors to achieve improved electrochemical performance. Various types of MOFs, including monometallic, binary, and tri-metallic compositions, as well as derivatives like hybrid nanostructures, sulfides, phosphides, and carbon composites, are explored for their energy storage potential. The review emphasizes the quest for superior electrochemical performance and stability with MOF-based materials. By analyzing recent research, the review underscores the potential of MOF-based supercapacitors to meet the increasing demands for high power and energy density solutions in the field of energy storage.

Analysis of Biomass Energy Potential around Major Cities in South Korea (국내 주요도시 주변의 바이오매스 에너지 잠재량 분석)

  • Kook, Jin Woo;Lee, See Hoon
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.178-183
    • /
    • 2015
  • Biomass is recognized as one of important renewable energy sources because it can be converted and used as solid, gaseous and liquid forms. Also, biomass is one of promising ways to solve the depletion of fossil fuels and global warming problems. The information about local biomass energy potentials and space energy densities can be powerfully utilized to determine the scale of biomass energy conversion plant and to analyze economic effects. The latest data on domestic biomass resources, such as agricultural, forestry, livestock and urban wastes, were collected from various government organizations and institutes and were analyzed to calculate biomass energy potential and space energy density. As local areas in South Korea to collect biomass resources increased, energy potentials increased, but space energy densities of total biomass decreased.

Estimation of the Energy Saving Potential using Energy Bandwidth Analysis in Manufacturing Plant (에너지 대역분석 기법을 이용한 생산플랜트에서 에너지절감 잠재량 산정)

  • Park, Hyung-Joon;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.236-240
    • /
    • 2011
  • Currently one of the most importance issues in industrial sector is energy cost and energy efficiency. The manufacturing plants especially have made many efforts to reduce energy cost by implementing maintenances. But in many cases, they are not aware that how much energy could be saved more. If we know the best energy consumption, which signifies energy baseline, we can control the intensity of maintenances. One way to obtain the baseline is using proper statistics from a specific plant, a sector of industry. Energy bandwidth signifies the gap between actual Specific Energy Consumption(SEC) of a certain plant and minimum SEC of the best plant, and estimate energy saving potential(ESP) is a result of bandwidth analysis. We chose a model plant and implemented some maintenance for a year, and then we obtained ESP. Additionally we could determine the decreased amount of carbon emissions from the plant using Carbon Emissions Factor(CEF) by Intergovernmental Panel on Climate Change(IPCC).

The Potential Energy Surface of BH5 and the Rate of the Hydrogen Scrambling

  • Kim, Kyung-Hyun;Kim, Yong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.763-770
    • /
    • 2003
  • The $BH_5$ molecule, which is suggested as an intermediate of the acidolysis of $BH_4^-$, contains a weak two-electron-three-center bond and it requires extremely high-level of theories to calculate the energy and structure correctly. The structures and energies of $BH_5$ and the transition state for the hydrogen scrambling have been studied using recently developed multi-coefficient correlated quantum mechanical methods (MCCMs). The dissociation energies and the barrier heights agree very well with the previous results at the CCSD(T)/ TZ(3d1f1g, 2p1d) level. We have also calculated the potential energy curves for the dissociation of $BH_5$ to $BH_3$ and $H_2$. The lower levels of theory were unable to plot correct potential curves, whereas the MCCM methods give very good potential energy curves and requires much less computing resources than the CCSD(T)/ TZ(3d1f1g,2p1d) level. The potential energy of the $BH_5$ scrambling has been obtained by the multiconfiguration molecular mechanics algorithm (MCMM), and the rates are calculated using the variational transition state theory including multidimensional tunneling approximation. The rate constant at 300 K is 2.1 × $10^9s^{-1}$, and tunneling is very important.

PID Recovery Characteristics of Photovoltaic Modules in Various Environmental Conditions (다양한 환경조건에서 태양전지모듈의 PID회복특성)

  • Lee, Eun-Suk;Jung, Tea-Hee;Go, Seok-Hwan;Ju, Young-Chul;Chang, Hyo Sik;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.5
    • /
    • pp.57-65
    • /
    • 2015
  • The Potential Induced Degradation(PID) in PV module mainly affected by various performance conditions such as a potential difference between solar cell and frame, ambient temperature and relative humidity. The positive charges as sodium ions in front glass reach solar cell in module by a potential difference and are accumulated in the solar cell. The ions accelerate the recombination of generation electrons within solar cell under illumination, which reduces the entire output of module. Recently, it was generally known that PID generation is suppressed by controlling the thickness of SiNx AR coating layer on solar cell or using Sodium-free glass and high resistivity encapsulant. However, recovery effects for module with PID are required, because those methods permanently prevent generating PID of module. PID recovery method that voltage reversely applies between solar cell and frame contract to PID generation begins to receive attention. In this paper, PID recovery tests by using voltage under various outdoor conditions as humidity, temperature, voltage are conducted to effectively mitigate PID in module. We confirm that this recovery method perfectly eliminates PID of solar cell according to repeative PID generation and recovery as well as the applied voltage of three factors mainly affect PID recovery.

Effective Hamiltonian Study on the Valence States of NH and $NH^+$

  • Jong Keun Park;Hosung Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.1
    • /
    • pp.34-41
    • /
    • 1990
  • The second order ab initio effective valence shell Hamiltonian is calculated for the valence state potential energy curves of NH and $NH^+$. From the potential energy curves various spectroscopic constants of valence states are determined. The results are in good agreement with experiments and configuration interaction calculations. They show the composite picture of potential energy curves and also indicate that the second order effective Hamiltonian theory is adequate for describing various valence states of a molecule and its ions simultaneously.

Adhesion of Soil to Polyester Fabric According to Polarity of Oily Soil in Oily/Particulate Mixed Soil System (지용성/고형오구의 혼합오염 계에서 지용성오구의 극성에 따른 Polyester직물에의 오구부착)

  • Kang, In-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.7
    • /
    • pp.1175-1183
    • /
    • 2010
  • This study investigates the effect of polarity of oily soil on adhesion of oily and particulate soil to PET fabric in oily/particulate mixed soil systems. The potential energy of interaction between two particles was examined as a fundamental environment of adhesion of soil to fabrics. The ${\zeta}$-potential of ${\alpha}-Fe_2O_3$ particles was measured by a microelectrophoresis method, and the potential energy of interaction between two particles was calculated by using the Verwey-Overbeek theory. The ${\zeta}$-potential of particle and the potential energy of interaction between two particles was slightly influenced by the polarity and type of oily soil, but increased with the increased anionic surfactant concentration and amount of oily soil. The adhesion of oily soil to fabric increased with the additional amount of polarity of oily soil and decreased surfactant concentration that was relatively high at a temperature of $60^{\circ}C$ surfactants solution. The adhesion of ${\alpha}-Fe_2O_3$ particle to PET fabric decreased with an increased amount and polarity of oily soil and increased surfactant concentration Although some similarity exists, the general trend of the adhesion to fabric by particulate soil differ from oily soil.

Effects of the Counter Ion Valency on the Colloidal Interaction between Two Cylindrical Particles

  • Lee, In-Ho;Dong, Hyun-Bae;Choi, Ju-Young;Lee, Sang-Yup
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.567-572
    • /
    • 2009
  • In this study, the effects of counter ion valency of the electrolyte on the colloidal repulsion between two parallel cylindrical particles were investigated. Electrostatic interactions of the cylindrical particles were calculated with the variation of counter ion valency. To calculate the electrical repulsive energy working between these two cylindrical particles, Derjaguin approximation was applied. The electrostatic potential profiles were obtained numerically by solving nonlinear Poission-Boltzmann (P-B) equation and calculating middle point potential and repulsive energy working between interacting surfaces. The electrical potential and repulsive energy were influenced by counter ion valency, Debye length, and surface potential. The potential profile and middle point potential decayed with the counter ion valency due to the promoted shielding of electrical charge. On the while, the repulsive energy increased with the counter ion valency at a short separation distance. These behaviors of electrostatic interaction agreed with previous results on planar or spherical surfaces.