• Title/Summary/Keyword: energy potential

Search Result 4,824, Processing Time 0.035 seconds

Potential to mitigate ammonia emission from slurry by increasing dietary fermentable fiber through inclusion of tropical byproducts in practical diets for growing pigs

  • Nguyen, Quan Hai;Le, Phung Dinh;Chim, Channy;Le, Ngoan Duc;Fievez, Veerle
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.4
    • /
    • pp.574-584
    • /
    • 2019
  • Objective: Research was conducted to test the effect of including fiber-rich feedstuffs in practical pig diets on nutrient digestibility, nitrogen balance and ammonia emissions from slurry. Methods: Three Vietnamese fiber sources were screened, namely cassava leaf meal (CL), cassava root residue (CR), and tofu by-product (TF). Accordingly, a control diet (Con) with 10% of dietary non-starch polysaccharides (NSP) and three test diets including one of the three fiber-rich feedstuffs to reach 15% of NSP were formulated. All formulated diets had the same level of crude protein (CP), in vitro ileal protein digestible and metabolisable energy, whereas the in vitro hindgut volatile fatty acid (VFA) production of the test diets was 12% to 20% higher than the control diet. Forty growing barrows with initial body weight at $28.6{\pm}1.93kg$ ($mean{\pm}standard$ deviation) were allocated to the four treatments. When pigs reached about 50 kg of body weight, four pigs from each treatment were used for a nitrogen balance trial and ammonia emission assessment, the remaining six pigs continued the second period of the feeding trial. Results: The TF treatment increased fecal VFA by 33% as compared with the control treatment (p = 0.07), suggesting stimulation of the hindgut fermentation. However, urinary N was not significantly reduced or shifted to fecal N, nor was slurry pH decreased. Accordingly, ammonia emissions were not mitigated. CR and CL treatments failed to enhance in vivo hindgut fermentation, as assessed by fecal VFA and purine bases. On the contrary, the reduction of CP digestibility in the CL treatment enhanced ammonia emissions from slurry. Conclusion: Dietary inclusion of cassava and tofu byproducts through an increase of dietary NSP from 10% to 15% might stimulate fecal VFA excretion but this does not guarantee a reduction in ammonia emissions from slurry, while its interaction with protein digestibility even might enhance enhanced ammonia emission.

Analysis of Causes of and Solutions to the Stack Effect by Vertical Zoning of High-rise Buildings (초고층 건축물 수직조닝별 연돌효과의 원인 및 해결 방안 분석)

  • Shin, Sang Wook;Ryu, Jong Woo;Jeong, Hee Woong;Kim, Dae Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.5
    • /
    • pp.483-493
    • /
    • 2021
  • Urban overcrowding has created an explosive supply and demand for high-rise buildings. High-rise buildings are contributing to enhancing the image of the city by serving as focal points, but due to the stack effect, malfunction of elevator doors, difficulties in opening and closing the doors and windows of the outer wall, smoke and odors spreading to the upper floors, noise, energy loss, fire and pollutants have been causing various unexpected problems such as rapid spread of fire. This study classified high-rise buildings according to their vertical zoning, analyzed the causes of and solutions to the stack effect, and derived design and construction methods. Through the initial plan to block the outside air and securing airtightness through precise construction, we sought ways to secure the airtightness inside and outside the building by actively blocking the airflow from the lower floors. In addition, the facility solution can be a measure to reduce the specific phenomena caused by the stack effect, but it should only be applied to the minimum extent because the potential for secondary damage is high. This study emphasized the need for systematic stack effect management by suggesting design and construction measures for each vertical zoning of the causes and countermeasures of the stack effect. It is expected that this study will be helpful not only for design and construction, but also for building maintenance.

Hysteretic characteristics of steel plate shear walls: Effects of openings

  • Ali, Mustafa M.;Osman, S.A.;Yatim, M.Y.M.;A.W., Al Zand
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.687-708
    • /
    • 2020
  • Openings in steel plate shear walls (SPSWs) are usually used for decorative designs, crossing locations of multiple utilities and/or structural objectives. However, earlier studies showed that generating an opening in an SPSW has a negative effect on the cyclic performance of the SPSW. Therefore, this study proposes tripling or doubling the steel-sheet-plate (SSP) layer and stiffening the opening of the SPSW to provide a solution to undesirable opening effects, improve the SPSW performance and provide the infill option of potential strengthening measures after the construction stage. The study aims to investigate the impact of SSP doubling with a stiffened opening on the cyclic behaviour, expand the essential data required by structural designers and quantify the SPSW performance factors. Validated numerical models were adopted to identify the influence of the chosen parameters on the cyclic capacity, energy dissipation, ductility, seismic performance factors (SPF) and stiffness of the suggested method. A finite Element (FE) analysis was performed via Abaqus/CAE software on half-scale single-story models of SPSWs exposed to cyclic loading. The key parameters included the number of SSP layers, the opening size ratios corresponding to the net width of the SSP, and the opening shape. The findings showed that the proposed assembly method found a negligible influence in the shear capacity with opening sizes of 10, 15, 20%. However, a deterioration in the wall strength was observed for openings with sizes of 25% and 30%. The circular opening is preferable compared with the square opening. Moreover, for all the models, the average value of the obtained ductility did not show substantial changes and the ultimate shear resistance was achieved after reaching a drift ratio of 4.36%. Additionally, the equivalent sectional area of the SSP in the twin and triple configuration of the SPSWs demonstrated approximately similar results. Compared with the single SSP layer, the proposed configuration of the twin SSP layer with a stiffened opening suggest to more sufficiency create SSP openings in the SPSW compared to that of other configurations. Finally, a tabular SPF quantification is exhibited for SPSWs with openings.

Preparation and characterization of Mn doped copper nitride films with high photocurrent response

  • Yu, Aiai;Hu, Ruiyuan;Liu, Wei;Zhang, Rui;Zhang, Jian;Pu, Yong;Chu, Liang;Yang, Jianping;Li, Xing'ao
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1306-1312
    • /
    • 2018
  • The Mn-doped copper nitride ($Cu_3N$) films with Mn concentration of 2.0 at. % have high crystallinity and uniform surface morphology. We found that the as-synthesized Mn-doped $Cu_3N$ films show suitable optical absorption in the visible region and the band gap is ~1.48 eV. A simple photodetector based on Mn doped $Cu_3N$ films was firstly fabricated via magnetron sputtering method. The fabricated device with doping of Mn demonstrated high photocurrent response and fast response shorter than 0.1 s both for rise and decay time superior to the pure $Cu_3N$. Furthermore, the energy levels of Mn-doped Cu3N matched well with ITO and Ag electrode. The excellent photoelectric properties reflect a good balance between sensitivities and response rate. Our investigation reveals the excellent potential of Mn-doped $Cu_3N$ films for application of photodetectors.

Scenario-based Vulnerability Assessment of Hydroelectric Power Plant (시나리오 기반 수력플랜트 설비의 취약성 평가)

  • Nam, Myeong Jun;Lee, Jae Young;Jung, Woo Young
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.1
    • /
    • pp.9-21
    • /
    • 2021
  • Recently, the importance of eco-friendly power generation facility using renewable energy has newly appeared. Hydropower plant is a very important source of electricity generation and supply which is very important to secure safety because it is commonly connected with multi facility and operated on a large scale. In this study, a scenario-based analysis method was suggested to assess vulnerability of a penstock system caused by water hammer commonly occurred in the operation of hydropower plants. A hypothetical hydropower plant was used to demonstrate the applicability of a transient analysis model. In order to verify reliability of the model, the prediction of pressure behaviors were compared with the results of commercial model (SIMSEN) and measured data, then a real hydroelectric power plant was applied to develop all potential water hammer scenarios during the actual operation. The scenario-based simulation and vulnerability assessment for water hammer in the penstock system were performed with internal and external load conditions. The simulation results indicated that the vulnerability of a penstock system was varied with the operating conditions of hydropower facilities and significantly affected by load combination consisting of different load scenarios. The proposed numerical method could be an useful tool for the vulnerabilityty assessment of the hydropower plants due to water hammer.

Automatic Bee-Counting System with Dual Infrared Sensor based on ICT (ICT 기반 이중 적외선 센서를 이용한 꿀벌 출입 자동 모니터링 시스템)

  • Son, Jae Deok;Lim, Sooho;Kim, Dong-In;Han, Giyoun;Ilyasov, Rustem;Yunusbaev, Ural;Kwon, Hyung Wook
    • Journal of Apiculture
    • /
    • v.34 no.1
    • /
    • pp.47-55
    • /
    • 2019
  • Honey bees are a vital part of the food chain as the most important pollinators for a broad palette of crops and wild plants. The climate change and colony collapse disorder (CCD) phenomenon make it challenging to develop ICT solutions to predict changes in beehive and alert about potential threats. In this paper, we report the test results of the bee-counting system which stands out against the previous analogues due to its comprehensive components including an improved dual infrared sensor to detect honey bees entering and leaving the hive, environmental sensors that measure ambient and interior, a wireless network with the bluetooth low energy (BLE) to transmit the sensing data in real time to the gateway, and a cloud which accumulate and analyze data. To assess the system accuracy, 3 persons manually counted the outgoing and incoming honey bees using the video record of 360-minute length. The difference between automatic and manual measurements for outgoing and incoming scores were 3.98% and 4.43% respectively. These differences are relatively lower than previous analogues, which inspires a vision that the tested system is a good candidate to use in precise apicultural industry, scientific research and education.

Performance Assessment of Navigation Seakeeping for Coastal Liquified-Natural-Gas Bunkering Ship (연안선박용 LNG 벙커링 전용선박의 내항성능 평가에 대한 연구)

  • Yi, Minah;Park, Jun-Bum;Lee, Chang-Hee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.904-914
    • /
    • 2020
  • Through the Ministry of Trade, Industry, and Energy, South Korea is trying to support the "Building Project for Liquified Natural Gas (LNG) Bunkering Ship," centered on the Korea Gas Corporation, while the Ministry of Maritime Af airs and Fisheries is pushing to construct an LNG bunkering terminal at Busan New Port. LNG bunkering ships are essential for supplying LNG fuel from the terminal to the ships, resulting in the need for safety operation procedures. Therefore, in this study, the stability of a coastal LNG bunkering ship operating from Busan New Port to the anchorage in Busan Port was assessed to investigate the need for operational procedures for coastal LNG bunkering ships. Seakeeping analysis of the LNG bunkering ship was performed for each significant wave height by combining the response amplitude operator from the ship motion analysis under the potential flow theory with the actual observed sea data for five years and Texel, Marsen, and Arsloe (TMA) spectrum suitable for the Busan coast. The results showed that the roll and horizontal acceleration were the main risks that affected the navigation seakeeping performance above a significance wave height of 2 m. The operational periods of the LNG bunkering ship ranged from 83.3% to 99.9% of the total observation period.

Improvement Method for the Post-Management End System of a Landfill by Applying Total Pollutant Load Concept (오염총량 개념을 적용한 매립장 사후관리종료제도 개선 방안)

  • Chun, Seung-Kyu;Sim, Nak-Jong;Jeon, Eun-Jeong;Ryu, Don-Sik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.2
    • /
    • pp.15-23
    • /
    • 2021
  • A method of improving the post-management end system of a landfill that reflected total pollutant load was applied to the SUDOKWON 1st Landfill Site. Modeling results showed that the ratio of remaining methane, when compared to the total maximum potential of 2,521 × 106 Nm3, was estimated to be 8.8% in 2020, 7.0% in 2030, and 6.5% in 2040. If the average oxidation rate of 89.1% in 2005-2019 was applied, the ratio decreased by 1.01% in 2020, 0.76% in 2030, and 0.70% in 2040. This suggests that if the amount of methane generated is all emitted from the surface of the landfill after 2025, the real amount emitted to the atmosphere is less than that in 2019; therefore, the post-management end is possible. According to the results of trend analysis of the quality of leachate water, effluent criteria for Biochemical Oxygen Demand (BOD) can be satisfied in 2024, while those for Chemical Oxygen Demand (COD) and Total Nitrogen (T-N) can be satisfied in 2047 and 2117, respectively. If the post-management end system changed based on total pollutant load, the post-management can be terminated BOD today and COD within a few years; however, the fact that T-N could be terminated only after 2041 shows the need to fundamentally change management methods.

A field Study to Evaluate Cooling Effects of Green Facade under Different Irrigation Conditions - Focusing on modular green facade planted with Hedera helix L and Pachysandra terminalis - (관수조절에 의한 벽면녹화의 냉각효과 분석 연구- 아이비, 수호초를 식재한 모듈형 벽면녹화를 중심으로-)

  • Kim, Eun-Sub;Yun, Seok-Hwan;Piao, Zheng-gang;Jeon, Yoon-Ho;Kang, Hye-Won;Kim, Sang-Hyuck;Kim, Ji-Yeon;Lee, Young-Gu;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.6
    • /
    • pp.121-132
    • /
    • 2021
  • Green facade has a significant impact on building's energy performance by controlling the absorption of solar radiation and improving outdoor thermal comfort through shading and evapotranspiration. In particular, since high-density building does not enough green space, green facade, and rooftop greening using artificial ground plants are highly utilized. However, the level of cooling effect according to plant traits and irrigation control is different. Therefore, in this study, the cooling effect analyzed for a total of 4 cases by controlling the irrigation condition based on hedera and spurge. Although hedera under sufficient water had the highest cooling effect(-2℃~-4℃), had the lowest cooling effect under non-irrigation(+1.1℃~+4.4℃). In addition, hedera under sufficient water had cooling effect than hedera under non-irrigation(-1℃~-8.1℃) and in the case of spurge, it had cooling effect(-0.3℃~-7.8℃) more than non-irrigation. As a result of measuring the amount of transpiration according to the light intensity (PAR) and carbon dioxide concentration conditions, transpiration of hedera was higher than the spurge (respectively 0.63204mmolm-2s-1, 0.674367mmolm-2s-1). The difference in the cooling effect of the green facade under irrigation condition was significant. But the potential cooling effect of green facade according to plants species was different. Therefore, in order to maximize and continuously provide the cooling effect of green facade in urban areas, it is necessary to consider the characteristics of plants and the control of water supply through the irrigation system.

Oral Administration of Weissella confusa WIKIM51 Reduces Body Fat Mass by Modulating Lipid Biosynthesis and Energy Expenditure in Diet-Induced Obese Mice (생쥐 비만모델에서 Weissella confusa WIKIM51 식이에 따른 지방합성 및 에너지 대사 조절로 인한 체지방 감소 효과)

  • Lim, Seul Ki;Lee, Jieun;Park, Sung Soo;Kim, Sun Yong;Park, Sang Min;Mok, Ji Ye;Chang, Hyunah;Choi, Hak-Jong
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.1
    • /
    • pp.135-146
    • /
    • 2022
  • Obesity is closely associated with profound dyslipidemia, insulin resistance, and fatty liver disease. Recent reports have suggested that alterations in gut microbiota can be linked to diet-induced obesity. In this study, the anti-obesity effects of Weissella confusa WIKIM51 isolated from kimchi were investigated, as evidenced by: i) reduced lipid accumulation and downregulated adipogenesis-related genes in 3T3-L1 adipocytes; ii) suppressed gains in body weight and epididymal fat mass; iii) reduced serum lipid levels, for example, triglyceride and total cholesterol; iv) increased serum adiponectin levels and reduced serum leptin levels; v) downregulated lipogenesis and upregulated β-oxidation-related genes in the epididymal fat; and vi) altered microbial communities. The collective evidence indicate the potential value of W. confusa WIKIM51 as a functional food supplement for the prevention and amelioration of obesity.