• Title/Summary/Keyword: energy potential

Search Result 4,872, Processing Time 0.037 seconds

A Study on the Pretreatment of Activated Sludge for Bio-hydrogen Production Process (생물학적 수소생산 공정 개발을 위한 오니 슬러지 전처리에 대한 연구)

  • Park, Dae-Won;Kim, Dong-Kun;Kim, Ji-Seong;Park, Ho-Il
    • Journal of Hydrogen and New Energy
    • /
    • v.15 no.3
    • /
    • pp.187-193
    • /
    • 2004
  • In this study, Anaerobic sewage sludge in a batch reactor operation at $35^\circ{C}$ was used as the seed to investigate the effect of pretreatments of waste activated sludge and to evaluate its hydrogen production potential by anaerobic fermentation. Various pretreatments including physical, chemical and biological means were conducted to utilize for substrate. As a result, SCODcr of alkali and mechanical treatment was 15 and 12 times enhanced, compared with a supernatant of activated sludge. And SCODcr was 2 time increase after re-treatment with biological hydrolysis. Those were shown that sequential hybridized treatment of sludge by chemical & biological methods to conform hydrogen production potential in bath experiments. When buffer solution was added to the activated sludge, hydrogen production potential increased as compare with no addition. Combination of alkali and mechanical treatment was higher in hydrogen production potential than other treatments.

Difference of Potential Range Formed at the Anode Between Water Drop Test and Temperature Humidity Bias Test to Evaluate Electrochemical Migration of Solders for Printed Circuit Board

  • Young Ran Yoo;Young Sik Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.153-163
    • /
    • 2023
  • Two types of accelerated tests, Water Drop Test (WDT) and Temperature-Humidity-Bias Test (THBT), can be used to evaluate the susceptibility to electrochemical migration (ECM). In the WDT, liquid water is directly applied to a specimen, typically a patterned conductor like a printed circuit board. Time to failure in the WDT typically ranges from several seconds to several minutes. On the other hand, the THBT is conducted under elevated temperature and humidity conditions, allowing for assessment of design and life cycle factors on ECM. THBT is widely recognized as a more suitable method for reliability testing than WDT. In both test methods, localized corrosion can be observed on the anode. Composition of dendrites formed during the WDT is similar to that formed during THBT. However, there is a lack of correlation between the time to failure obtained from WDT and that obtained from THBT. In this study, we investigated the relationship between electrochemical parameters and time to failure obtained from both WDT and THBT. Differences in time to failure can be attributed to actual anode potential obtained in the two tests.

THE p-LAPLACIAN OPERATORS WITH POTENTIAL TERMS

  • Chung, Soon-Yeong;Lee, Hee-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.4
    • /
    • pp.591-601
    • /
    • 2011
  • In this paper, we deal with the discrete p-Laplacian operators with a potential term having the smallest nonnegative eigenvalue. Such operators are classified as its smallest eigenvalue is positive or zero. We discuss differences between them such as an existence of solutions of p-Laplacian equations on networks and properties of the energy functional. Also, we give some examples of Poisson equations which suggest a difference between linear types and nonlinear types. Finally, we study characteristics of the set of a potential those involving operator has the smallest positive eigenvalue.

Langer Modification in WKB Quantization for Translationally Shape Invariant Potentials

  • Sun, Ho-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.818-824
    • /
    • 2012
  • When the Langer modification is applied to Coulomb potential, the standard WKB quantization yields an exact energy spectrum for the potential. This Langer modification has been known to be related to the centrifugal term appearing in Coulomb potential. But we find that a similar modification exists for all translationally shape invariant potentials without referring to the centrifugal term. The characteristic shape of the potentials accounts for the generalized version of Langer modification that makes the WKB quantization valid for all translationally shape invariant potentials.

Solution of Klein Gordon Equation for Some Diatomic Molecules with New Generalized Morse-like Potential Using SUSYQM

  • Isonguyo, Cecilia N.;Okon, Ituen B.;Ikot, Akpan N.;Hassanabadi, Hassan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3443-3446
    • /
    • 2014
  • We present the solution of Klein Gordon equation with new generalized Morse-like potential using SUSYQM formalism. We obtained approximately the energy eigenvalues and the corresponding wave function in a closed form for any arbitrary l state. We computed the numerical results for some selected diatomic molecules.

Corrosion behavioue of positive grid for lead-acid battery using potential step techniques (Potential Step 기법을 이용한 연축전지웅 양극기판의 부식거동)

  • 김상필;남기윤;황선욱;윤문수;문성인;도칠훈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.73-77
    • /
    • 1994
  • Lead-acid battery is used widely as a power source at a automobile, industrial machines. folk lifts. U.P.S. etc. Since lead-acid battery is cheaper than any other ones. But this battery has many disadvantages such as heavy, low energy density, environment problem etc. In this article, We introduce potential step methods to investigate corrosion behaviour of positive grids for lead alloyes.

OBTAINING BOUNDARY TANGENTIAL COMPONENTS OF POTENTIAL MAGNETIC FIELDS BY A VARIATIONAL METHOD

  • CHOE G. S.
    • Journal of The Korean Astronomical Society
    • /
    • v.31 no.2
    • /
    • pp.89-93
    • /
    • 1998
  • An attempt is made to find the boundary tangential components of potential magnetic fields without constructing solutions in the entire domain. In our procedure, the magnetic energy is expressed as a functional of tangential and normal magnetic fields at the boundary and is minimized by the variational principle. This paper reports a preliminary study on two dimensional potential fields above a plane.

  • PDF

On the Size of Quantum Dots with Bound Hydrogenic Impurity States

  • Sun, Ho-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.315-318
    • /
    • 2009
  • Some particular bound state energies of an electron, under Coulomb potential field, confined in a two-dimensional circle and a three-dimensional sphere are analytically derived. The derivation shows that the electron cannot be bound in a negative energy state when the circle (or sphere) is smaller than a certain critical size. The critical size dependency on the strength of Coulomb potential and the angular momentum of the electron is also analytically derived. This system mimics quantum dots. Therefore the derivation provides new information on a minimum critical size of quantum dots with hydrogenic impurity.

A New Empirical Potential Function and Its Application to Hydrogen Bonding

  • Kang, Young-Kee;Jhon, Mu-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.2 no.1
    • /
    • pp.8-11
    • /
    • 1981
  • A new potential function based on spectroscopic results for diatomic molecules is presented and applied to the hydrogen bonding systems. The potential energy of interaction is supposed to have electrostatic, polarization, dispersion, repulsion and effective charge-transfer contributions. Estimates of the effective charge-transfer quantity have been made based on the average charge of the proton donor and the acceptor atoms. For dimers such as water, methanol, acetic acid and formic acid, the vibrational stretching frequencies and dimerization energies are calculated and dicussed in connection with Badger-Bauer rule.

ON THE ORBITAL STABILITY OF INHOMOGENEOUS NONLINEAR SCHRÖDINGER EQUATIONS WITH SINGULAR POTENTIAL

  • Cho, Yonggeun;Lee, Misung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1601-1615
    • /
    • 2019
  • We show the existence of ground state and orbital stability of standing waves of nonlinear $Schr{\ddot{o}}dinger$ equations with singular linear potential and essentially mass-subcritical power type nonlinearity. For this purpose we establish the existence of ground state in $H^1$. We do not assume symmetry or monotonicity. We also consider local and global well-posedness of Strichartz solutions of energy-subcritical equations. We improve the range of inhomogeneous coefficient in [5, 12] slightly in 3 dimensions.