• Title/Summary/Keyword: energy needs

Search Result 1,479, Processing Time 0.03 seconds

Monthly Heating Energy Needs Analysis According to ISO 13790 and ISO 52016 (ISO 13790과 ISO 52016에 의한 월별 난방에너지 소요량 분석)

  • Zo, Chung-Hoon;Yun, Geun-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.5
    • /
    • pp.11-28
    • /
    • 2019
  • Governments are increasing energy efficiency in buildings through various policies to reduce building energy consumption. In 2002, the European Union adopted a building energy performance guideline to set minimum efficiency standards for residential and commercial buildings. Starting in 2020, all EU member states should ensure that all buildings are Near-Zero Energy Buildings (NZEB). In Korea, the government issued a zero-energy certification system. Since 2020, public buildings are required to cover energy consumption with the energy produced in buildings. As the demand for building energy simulation has increased to increase the energy efficiency of these buildings, the International Standard Organization (ISO) has created a standard for calculating building energy requirements called ISO 13790. This standard was revised to ISO 52016 in 2017. In this research, ISO 13790, which calculates the energy needs of existing buildings, and ISO 52016, which replaces them, are compared and analyzed, and applied to the calculation of heating energy needs of buildings. For models without thermal zoning(Case A), the difference in annual heating energy needs calculated from each criterion is $1.08kWh/m^2$, which is about 2% higher in ISO 52016. In the case of the thermal zoning model(Case B), the difference in annual heating energy needs calculated by each standard was $0.97kWh/m^2$, which was about 2% higher than ISO 52016. The heating energy needs model without thermal zoning has a higher energy needs than the heating energy needs model with thermal zoning. It is about 16% energy at $8.58kWh/m^2$ for ISO 13790 and $8.69kWh/m^2$ for ISO 52016.

Needs Analysis of Regional, Industrial, Academic, and Research Experts on Curriculum in the New and Renewable Energy (신재생에너지 분야 교육과정에 대한 지・산・학・연 전문가의 요구분석)

  • Choi, Jeehyun
    • Journal of Engineering Education Research
    • /
    • v.27 no.3
    • /
    • pp.14-25
    • /
    • 2024
  • The purpose of this study was to conduct a needs analysis among experts regarding the curriculum in the field of new and renewable energy for the future experts. To achieve this goal, purposive sampling was employed to select 30 experts from the reginal, industrial, academic, and research sectors in the new and renewable energy field, who participated in needs surveys and expert Delphi surveys. Needs assessments for 53 courses and suitability evaluations for 6 curriculums were conducted, and comprehensive advisory opinions were gathered. Data were analyzed using t-tests, Brich's needs assessment, the locus for focus model, and content analysis methods, with the assistance of MS Office Excel 2018 and SPSS 25.0 software. The key findings include: (a) 18 courses should be given top priority for operation, while 4 courses should be considered secondarily; (b) All 6 curriculums received positive evaluations; (c) Improvements are needed in curriculum development to cater to both generalist and specialist training needs, incorporating the acquisition of new technology and project-based learning experiences. The results of this study provide implications for the development of customized curriculums in the new and renewable energy industry.

Studies on the Energy Expenditure of the Use of the Electric Vacuum Cleaners (전기청소기 사용시의 에너지 소비량의 측정)

  • 신경주
    • Journal of the Korean Home Economics Association
    • /
    • v.20 no.4
    • /
    • pp.113-124
    • /
    • 1982
  • We have investited on the efficiency of the electric vacuum cleaners for household use. On this experiment, we have used the Expired Gas Analyer IHO6(SAN-EI, K.K) to get energy expenditure of house cleaning. The testing items are, (1) The difference of energy expenditure of cleaning for the each types of the test floors: Which are P-tile, Tatami, and 4 kinds of carpets. (2) The energy expenditure of cleaning for the room with a given quantity of furnitures: The volumes of furnitures are 0, 3, 10, 20% of the room with 2 kinds of chair. The results of the experiments are as follows. 1. The energy expenditure of cleaning for the types of test floors: Setting the energy expenditure on the basis of P-tile, Tatami needs 20~24% energy expenditure than P-tile, and carpet needs 60~64% energy expenditure than P-tile. 2. Cleaning time: The more the room has many furnitures, the more it takes longer. The types of vacuum cleaners, the Shoulder-type cleaner needs 1.19 times of the Upright-type, and the Cylender-type needs 1.08 times of the Upright-type. 3. The energy expenditure of cleaning for a given quantity of furnitures: The more the rooms has many furnitures, the more the energy expenditure increase. A 10% (20%) increases in the volume of the furniture causes a 100% (200%) increases in the energy expenditure of vacuum cleaners.

  • PDF

ASSESSING AND ADDRESSING INCREASED STAKEHOLDER AND OPERATOR INFORMATION NEEDS IN NUCLEAR FUEL CYCLE FACILITIES: TWO CONCEPTS

  • Saltiel, David H.
    • Nuclear Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.691-696
    • /
    • 2007
  • Nuclear energy programs around the world increasingly find themselves at the nexus of potentially conflicting demands from both domestic and international stakeholders. On one side, the rapid growth in demand for electricity coupled with the goal of reducing carbon emissions calls for a significant expansion of nuclear energy. On the other, stakeholders are seeking ever greater safety, environmental, security, and nonproliferation assurances before consenting to the construction of new nuclear energy facilities. Satisfying the demand for clean energy supplies will require nuclear energy operators to find new and innovative ways to build confidence among stakeholders. This paper discusses two related concepts which can contribute to meeting the needs of key stakeholders in cost effective and efficient ways. Structured processes and tools for assessing stakeholder needs can build trust and confidence while facilitating the "designing-in" of information collection systems for new facilities to achieve maximum efficiency and effectiveness. Integrated approaches to monitoring facilities and managing the resulting data can provide stakeholders with continued confidence while offering operators additional facility and process information to improve performance.

A development of system dynamics model for water, energy, and food nexus (W-E-F nexus)

  • Wicaksono, Albert;Jeong, Gimoon;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.220-220
    • /
    • 2015
  • Water, energy, and food security already became a risk that threatens people around the world. Increasing of resources demand, rapid urbanization, decreasing of natural resources and climate change are four major problems inducing resources' scarcity. Indeed, water, energy, and food are interconnected each other thus cannot be analyzed separately. That is, for simple example, energy needs water as source for hydropower plant, water needs energy for distribution, and food needs water and energy for production, which is defined as W-E-F nexus. Due to their complicated linkage, it needs a computer model to simulate and analyze the nexus. Development of a computer simulation model using system dynamics approach makes this linkage possible to be visualized and quantified. System dynamics can be defined as an approach to learn the feedback connections of all elements in a complex system, which mean, every element's interaction is simulated simultaneously. Present W-E-F nexus models do not calculate and simulate the element's interaction simultaneously. Existing models only calculate the amount of water and energy resources that needed to provide food, water, or energy without any interaction from the product to resources. The new proposed model tries to cope these lacks by adding the interactions, climate change effect, and government policy to optimize the best options to maintain the resources sustainability. On this first phase of development, the model is developed only to learn and analyze the interaction between elements based on scenario of fulfilling the increasing of resources demand, due to population growth. The model is developed using the Vensim, well-known system dynamics model software. The results are amount of total water, energy, and food demand and production for a certain time period and it is evaluated to determine the sustainability of resources.

  • PDF

Characterization of Dietary Energy in Swine Feed and Feed Ingredients: A Review of Recent Research Results

  • Velayudhan, D.E.;Kim, I.H.;Nyachoti, C.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • Feed is single most expensive input in commercial pork production representing more than 50% of the total cost of production. The greatest proportion of this cost is associated with the energy component, thus making energy the most important dietary in terms of cost. For efficient pork production, it is imperative that diets are formulated to accurately match dietary energy supply to requirements for maintenance and productive functions. To achieve this goal, it is critical that the energy value of feeds is precisely determined and that the energy system that best meets the energy needs of a pig is used. Therefore, the present review focuses on dietary supply and needs for pigs and the available energy systems for formulating swine diets with particular emphasis on the net energy system. In addition to providing a more accurate estimate of the energy available to the animal in an ingredient and the subsequent diet, diets formulated using the this system are typically lower in crude protein, which leads to additional benefits in terms of reduced nitrogen excretion and consequent environmental pollution. Furthermore, using the net energy system may reduce diet cost as it allows for increased use of feedstuffs containing fibre in place of feedstuffs containing starch. A brief review of the use of distiller dried grains with solubles in swine diets as an energy source is included.

Experiments on Piezoelectric Energy Harvesting Device (압전체를 이용한 에너지 수집 장치 실험)

  • Jung, Moon-San;Kwak, Moon-K.;Kim, Ki-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.360-368
    • /
    • 2007
  • This paper is concerned with the development of piezoelectric energy harvesting device. Literature survey was carried out to investigate the state-of-art technology regarding piezoelectric energy harvesting method. It shows that the piezoelectric energy harvesting system has been researched as the needs for the auxiliary power system grow for ubiquitous sensor node. In this study, the piezoelectric energy harvesting system was constructed and the corresponding electric circuit was also built to investigate the power characteristics. Experimental results show that it can charge the small battery with ambient vibrations but still needs an effective mechanism to collect ambient energies.

  • PDF

Regenerative energy analysis in DC 1500V electric traction substations (DC 1500V용 전철변전소의 회생전력량 분석)

  • Bae, Chang-Han;Jang, Dong-Uk;Kim, Young-Gi;Kim, Sung-Tae;Kim, Byung-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.836-845
    • /
    • 2007
  • In DC 1500V electric traction substations, diode rectifiers are commonly used to supply stable DC power with electric train sets. However, it operates in the first quadrant of the voltage-current plane and thus needs regenerative inverters which transfer the surplus regenerative power caused by regenerative braking of electric train sets into the grid. In order to select the proper capacity and installation position of regenerative inverter, it needs to investigate the consumed and regenerative energy of the electric traction substations in advance. This paper presents an analysis of regenerative energy in two substations operating in Seoul line 2 and Kwangju line 1. DC line voltage and feeder currents are measured for a day to calculate consumed and regenerative power for four feeders. We calculated an amount of regenerative energy consumed in other feeders and estimated the cost reduction in energy consumption due to the reuse of regenerative energy.

  • PDF

Estimating the Value of the North Korean Renewable Energy Power Market Taking into Account North Korea's Power Generation and the Safety of Its Inhabitants (북한 발전과 주민 안전을 고려한 북한 신재생에너지 전력 시장 가치 추정)

  • Jang, Hyung Sik;Koo, Il Seob
    • Journal of the Korea Safety Management & Science
    • /
    • v.24 no.3
    • /
    • pp.75-84
    • /
    • 2022
  • While protecting its lives and property from natural disasters such as floods and droughts, North Korea needs to develop into an informationized industrial society by securing renewable energy power in the era of energy transition. In addition, existing research has considered that a policy of continuous and consistent expansion of renewable energy based on the safety of the lives of ordinary people could be the solution. South Korea needs to recognize that the supply of energy for a minimum of living is more important to the North Korean people than the economic benefits of securing North Korea's renewable energy market. Therefore, in this paper, from that point of view, we have calculated the amount of electricity that North Korea lacks necessary for the lives of its inhabitants that can be replaced by renewable energy, and considered ways to estimate the market value.