• Title/Summary/Keyword: energy forecasting

Search Result 318, Processing Time 0.037 seconds

24 hour Load Forecasting using Combined Very-short-term and Short-term Multi-Variable Time-Series Model (초단기 및 단기 다변수 시계열 결합모델을 이용한 24시간 부하예측)

  • Lee, WonJun;Lee, Munsu;Kang, Byung-O;Jung, Jaesung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.493-499
    • /
    • 2017
  • This paper proposes a combined very-short-term and short-term multi-variate time-series model for 24 hour load forecasting. First, the best model for very-short-term and short-term load forecasting is selected by considering the least error value, and then they are combined by the optimal forecasting time. The actual load data of industry complex is used to show the effectiveness of the proposed model. As a result the load forecasting accuracy of the combined model has increased more than a single model for 24 hour load forecasting.

Mid- and Short-term Power Generation Forecasting using Hybrid Model (하이브리드 모델을 이용하여 중단기 태양발전량 예측)

  • Nam-Rye Son
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.715-724
    • /
    • 2023
  • Solar energy forecasting is essential for (1) power system planning, management, and operation, requiring accurate predictions. It is crucial for (2) ensuring a continuous and sustainable power supply to customers and (3) optimizing the operation and control of renewable energy systems and the electricity market. Recently, research has been focusing on developing solar energy forecasting models that can provide daily plans for power usage and production and be verified in the electricity market. In these prediction models, various data, including solar energy generation and climate data, are chosen to be utilized in the forecasting process. The most commonly used climate data (such as temperature, relative humidity, precipitation, solar radiation, and wind speed) significantly influence the fluctuations in solar energy generation based on weather conditions. Therefore, this paper proposes a hybrid forecasting model by combining the strengths of the Prophet model and the GRU model, which exhibits excellent predictive performance. The forecasting periods for solar energy generation are tested in short-term (2 days, 7 days) and medium-term (15 days, 30 days) scenarios. The experimental results demonstrate that the proposed approach outperforms the conventional Prophet model by more than twice in terms of Root Mean Square Error (RMSE) and surpasses the modified GRU model by more than 1.5 times, showcasing superior performance.

Time-Series Estimation based AI Algorithm for Energy Management in a Virtual Power Plant System

  • Yeonwoo LEE
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.1
    • /
    • pp.17-24
    • /
    • 2024
  • This paper introduces a novel approach to time-series estimation for energy load forecasting within Virtual Power Plant (VPP) systems, leveraging advanced artificial intelligence (AI) algorithms, namely Long Short-Term Memory (LSTM) and Seasonal Autoregressive Integrated Moving Average (SARIMA). Virtual power plants, which integrate diverse microgrids managed by Energy Management Systems (EMS), require precise forecasting techniques to balance energy supply and demand efficiently. The paper introduces a hybrid-method forecasting model combining a parametric-based statistical technique and an AI algorithm. The LSTM algorithm is particularly employed to discern pattern correlations over fixed intervals, crucial for predicting accurate future energy loads. SARIMA is applied to generate time-series forecasts, accounting for non-stationary and seasonal variations. The forecasting model incorporates a broad spectrum of distributed energy resources, including renewable energy sources and conventional power plants. Data spanning a decade, sourced from the Korea Power Exchange (KPX) Electrical Power Statistical Information System (EPSIS), were utilized to validate the model. The proposed hybrid LSTM-SARIMA model with parameter sets (1, 1, 1, 12) and (2, 1, 1, 12) demonstrated a high fidelity to the actual observed data. Thus, it is concluded that the optimized system notably surpasses traditional forecasting methods, indicating that this model offers a viable solution for EMS to enhance short-term load forecasting.

Cluster Analysis and Meteor-Statistical Model Test to Develop a Daily Forecasting Model for Jejudo Wind Power Generation (제주도 일단위 풍력발전예보 모형개발을 위한 군집분석 및 기상통계모형 실험)

  • Kim, Hyun-Goo;Lee, Yung-Seop;Jang, Moon-Seok
    • Journal of Environmental Science International
    • /
    • v.19 no.10
    • /
    • pp.1229-1235
    • /
    • 2010
  • Three meteor-statistical forecasting models - the transfer function model, the time-series autoregressive model and the neural networks model - were tested to develop a daily forecasting model for Jejudo, where the need and demand for wind power forecasting has increased. All the meteorological observation sites in Jejudo have been classified into 6 groups using a cluster analysis. Four pairs of observation sites among them, all having strong wind speed correlation within the same meteorological group, were chosen for a model test. In the development of the wind speed forecasting model for Jejudo, it was confirmed that not only the use a wind dataset at the objective site itself, but the introduction of another wind dataset at the nearest site having a strong wind speed correlation within the same group, would enhance the goodness to fit of the forecasting. A transfer function model and a neural network model were also confirmed to offer reliable predictions, with the similar goodness to fit level.

A Study on Development of a Forecasting Model of Wind Power Generation for Walryong Site (월령단지 풍력발전 예보모형 개발에 관한 연구)

  • Kim, Hyun-Goo;Lee, Yeong-Seup;Jang, Mun-Seok;Kyong, Nam-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.2
    • /
    • pp.27-34
    • /
    • 2006
  • In this paper, a forecasting model of wind speed at Walryong Site, Jeju Island is presented, which has been developed and evaluated as a first step toward establishing Korea Forecasting Model of Wind Power Generation. The forecasting model is constructed based on neural network and is trained with wind speed data observed at Cosan Weather Station located near by Walryong Site. Due to short period of measurements at Walryong Site for training statistical model Gosan Weather Station's long-term data are substituted and then transplanted to Walryong Site by using Measure-Correlate-Predict technique. One to three-hour advance forecasting of wind speed show good agreements with the monitoring data of Walryong site with the correlation factors 0.96 and 0.88, respectively.

Adaptive Wavelet Neural Network Based Wind Speed Forecasting Studies

  • Chandra, D. Rakesh;Kumari, Matam Sailaja;Sydulu, Maheswarapu;Grimaccia, F.;Mussetta, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1812-1821
    • /
    • 2014
  • Wind has been a rapidly growing renewable power source for the last twenty years. Since wind behavior is chaotic in nature, its forecasting is not easy. At the same time, developing an accurate forecasting method is essential when wind farms are integrated into the power grid. In fact, wind speed forecasting tools can solve issues related to grid stability and reserve allocation. In this paper 30 hours ahead wind speed profile forecast is proposed using Adaptive Wavelet Neural Network (AWNN). The implemented AWNN uses a Mexican hat mother Wavelet, and Morlet Mother Wavelet for seven, eight and nine levels decompositions. For wind speed forecasting, the time series data on wind speed has been gathered from the National Renewable Energy Laboratory (NREL) website. In this work, hourly averaged 10-min wind speed data sets for the year 2004 in the Midwest ISO region (site number 7263) is taken for analysis. Data sets are normalized in the range of [-1, 1] to improve the training performance of forecasting models. Total 8760 samples were taken for this forecasting analysis. After the forecasting phase, statistical parameters are calculated to evaluate system accuracy, comparing different configurations.

A Tutorial: Information and Communications-based Intelligent Building Energy Monitoring and Efficient Systems

  • Seo, Si-O;Baek, Seung-Yong;Keum, Doyeop;Ryu, Seungwan;Cho, Choong-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2676-2689
    • /
    • 2013
  • Due to increased consumption of energy in the building environment, the building energy management systems (BEMS) solution has been developed to achieve energy saving and efficiency. However, because of the shortage of building energy management specialists and incompatibility among the energy management systems of different vendors, the BEMS solution can only be applied to limited buildings individually. To solve these problems, we propose a building cluster based remote energy monitoring and management (EMM) system and its functionalities and roles of each sub-system to simultaneously manage the energy problems of several buildings. We also introduce a novel energy demand forecasting algorithm by using past energy consumption data. Extensive performance evaluation study shows that the proposed regression based energy demand forecasting model is well fitted to the actual energy consumption model, and it also outperforms the artificial neural network (ANN) based forecasting model.

Renewable Power Generation Forecasting Method for Distribution System: A Review (배전시스템 운영계획을 위한 신재생에너지원 발전량 예측 방법)

  • Cho, Jintae;Kim, Hongjoo;Ryu, Hosung;Cho, Youngpyo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.1
    • /
    • pp.21-29
    • /
    • 2022
  • Power generated from renewable energy has continuously increased recently. As the distributed generation begins to interconnect in the distribution system, an accurate generation forecasting has become important in efficient distribution planning. This paper explained method and current state of distributed power generation forecasting models. This paper presented selecting input and output variables for the forecasting model. In addition, this paper analyzed input variables and forecasting models that can use as mid-to long-term distributed power generation forecasting.

Feasibility Study on Wind Power Forecasting Using MOS Forecasting Result of KMA (기상청 MOS 예측값 적용을 통한 풍력 발전량 예측 타당성 연구)

  • Kim, Kyoung-Bo;Park, Yun-Ho;Park, Jeong-Keun;Ko, Kyung-Nam;Huh, Jong-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.2
    • /
    • pp.46-53
    • /
    • 2010
  • In this paper the feasibility of wind power forecasting from MOS(Model Output Statistics) was evaluated at Gosan area in Jeju during February to Octoberin 2008. The observed wind data from wind turbine was compared with 24 hours and 48 hours forecasting wind data from MOS predicting. Coefficient of determination of measured wind speed from wind turbine and 24 hours forecasting from MOS was around 0.53 and 48 hours was around 0.30. These determination factors were increased to 0.65 from 0.53 and 0.35 from 0.30, respectively, when it comes to the prevailing wind direction($300^{\circ}\sim60^{\circ}$). Wind power forecasting ratio in 24 hours of MOS showed a value of 0.81 within 70% confidence interval and it also showed 0.65 in 80% confidence interval. It is suggested that the additional study of weather conditions be carried out when large error happened in MOS forecasting.

Calculation Method of Dedicated Transmission Line's Meteological Data to Forecast Renewable Energy (신재생에너지 예측을 위한 송전선로의 계량 데이터 계산 방법)

  • Ja-hyun, Baek;Hyeonjin, Kim;Soonho, Choi;Sangho, Park
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.55-59
    • /
    • 2022
  • This paper introduce Renewable Energy forecasting technology, which is a part of renewable management system. Then, calculation method of dedicated transmission line's meteorological data to forecast renewable energy is suggested. As the case of dedicated transmission line, there is only power output data combined the number of renewable plants' output that acquired from circuit breakers. So it is need to calculate meteorological data for dedicated transmission line that matched combined power output data. this paper suggests two calculation method. First method is select the plant has the largest capacity, and use it's meteorological data as line meteorological data. Second method is average with weight that given according to plants' capacity. In case study, suggested methods are applied to real data. Then use calculated data to Renewable forecasting and analyze the forecasting results.