• Title/Summary/Keyword: energy dissipation performance

Search Result 739, Processing Time 0.138 seconds

Thermophysical Properties of Copper/graphite Flake Composites by Electroless Plating and Spark Plasma Sintering (무전해도금 및 방전 플라즈마 소결을 이용한 구리/흑연 복합재료 제조 및 열물성 특성 평가)

  • Lee, Jaesung;Kang, Ji Yeon;Kim, Seulgi;Jung, Chanhoe;Lee, Dongju
    • Journal of Powder Materials
    • /
    • v.27 no.1
    • /
    • pp.25-30
    • /
    • 2020
  • Recently, the amount of heat generated in devices has been increasing due to the miniaturization and high performance of electronic devices. Cu-graphite composites are emerging as a heat sink material, but its capability is limited due to the weak interface bonding between the two materials. To overcome these problems, Cu nanoparticles were deposited on a graphite flake surface by electroless plating to increase the interfacial bonds between Cu and graphite, and then composite materials were consolidated by spark plasma sintering. The Cu content was varied from 20 wt.% to 60 wt.% to investigate the effect of the graphite fraction and microstructure on thermal conductivity of the Cu-graphite composites. The highest thermal conductivity of 692 W m-1K-1 was achieved for the composite with 40 wt.% Cu. The measured coefficients of thermal expansion of the composites ranged from 5.36 × 10-6 to 3.06 × 10-6K-1. We anticipate that the Cu-graphite composites have remarkable potential for heat dissipation applications in energy storage and electronics owing to their high thermal conductivity and low thermal expansion coefficient.

Hysteresis Behavior of Partially Restrained Smart Connections for the Seismic Performance of Composite Frame (CFT 합성골조의 내진성능을 위한 스마트 반강접합의 이력거동)

  • Kim, Joo Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.99-108
    • /
    • 2015
  • The partially restrained smart CFT (concrete filled tube) column-to-beam connections with top-seat split T connections show various behavior characteristics according to the changes in the diameter and tightening force of the fastener, the geometric shape of T-stub, and material properties. This paper presents results from a systematic three-dimensional nonlinear finite element study on the structural behavior of the top-seat split T connections subjected to cyclic loadings. This connection includes super-elastic shape memory alloy (SMA) T-stub and rods to obtain the re-centering capabilities as well as great energy dissipation properties of the CFT composite frame. A wide scope of additional structural behaviors explain the influences of the top-seat split T connections parameters, such as the different thickness and gage distances of split T-stub.

Experimental Study on Double Skin Composite Walls Subjected to Cyclic Loading (주기하중을 받는 이중강판합성벽의 실험연구)

  • Eom, Tae Sung;Park, Hong Gun;Kim, Jin Ho;Chang, In Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.289-301
    • /
    • 2008
  • Double skin composite (DSC) wall is a structural wall that is filed with concrete between two steel plate skins connected by tie bars. This type of wall was developed to enhance the structural performance of wall, to reduce wall thickness, and to enhance constructibility, eliminating the use of formwork and re-bars. In this study, cyclic tests were performed to investigate the inelastic behavior and earthquake resistance of isolated and coupled DSC walls with rectangular and T-shapedcross-sections. The DSC walls showed stable cyclic behaviors, exhibiting excellent energy dissipation capacity. The te st specimens failed by the tensile fracture of welded joints at the wall base and coupling beam and by the severe local buckling of the steel plate. The deformation capacity of the walls varied with the connection details at the wall base and their cross-sectional shapes. The specimens with well-detailed connections at the wall base showed relatively god deformation capacity ranging from 2.0% to 3.7% drift ratio. The load-carrying capacities of the isolated and coupled wall specimens were evaluated considering their inelastic behavior. The results were compared with the test results.

Experimental Evaluation of New Seismic Connections between Rectangular Steel Tube Column and H-shaped Beam (각형강관 기둥-H형강 보 신형상 내진접합부의 실험적 평가)

  • Jin, Jooho;Kim, DooHwan;Kim, Hyunsook;Shin, Jinwon;Park, Kooyun;Lee, Kyungkoo
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.2
    • /
    • pp.77-85
    • /
    • 2018
  • A through diaphragm is often used to ensure their stiffness for moment-resisting connections using rectangular steel-tube column and H-shaped beam. The through-diaphragm connections, however, have some difficulties for their applicabilities to the field due to the complexity of the fabrication and construction processes. This study thus proposes a new modular system of steel structures assembled only using bolts without welding, by bringing a connection module composed of rectangular steel-tube column, H-shaped beam and oneway bolt onto the site. An experimental study to evaluate the seismic performance of the proposed connection details based on the new modular system is then conducted. The length and type of the inner reinforcement plate are considered as the primary design parameters, and the strength, stiffness, ductility and energy dissipation capability of the new connections are experimentally analyzed by comparison to those of conventional through diaphragm connections.

Nonproportional viscous damping matrix identification using frequency response functions (주파수 응답 데이터를 이용한 비비례 점성감쇠행렬 추정)

  • Min, Cheon-Hong;Kim, Hyung-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.369-373
    • /
    • 2016
  • Accurate identification of damping matrix in structures is very important for predicting vibration responses and estimating parameters or other characteristics affected by energy dissipation. In this paper, damping matrix identification method that use normal frequency response functions, which were estimated from complex frequency response functions, is proposed. The complex frequency response functions were obtained from the experimental data of the structure. The nonproportional damping matrix was identified through the proposed method. Two numerical examples (lumped-mass model and cantilever beam model) were considered to verify the performance of the proposed method. As a result, the damping matrix of the nonproportional system was accurately identified.

A study on detailing gusset plate and bracing members in concentrically braced frame structures

  • Hassan, M.S.;Salawdeh, S.;Hunt, A.;Broderick, B.M.;Goggins, J.
    • Advances in Computational Design
    • /
    • v.3 no.3
    • /
    • pp.233-267
    • /
    • 2018
  • Conventional seismic design of concentrically braced frame (CBF) structures suggests that the gusset plate connecting a steel brace to beams and/or columns should be designed as non-dissipative in earthquakes, while the steel brace members should be designed as dissipative elements. These design intentions lead to thicker and larger gusset plates in design on one hand and a potentially under-rated contribution of gusset plates in design, on the other hand. In contrast, research has shown that compact and thinner gusset plates designed in accordance with the elliptical clearance method rather than the conventional standard linear clearance method can enhance system ductility and energy dissipation capacity in concentrically braced steel frames. In order to assess the two design methods, six cyclic push-over tests on full scale models of concentric braced steel frame structures were conducted. Furthermore, a 3D finite element (FE) shell model, incorporating state-of-the-art tools and techniques in numerical simulation, was developed that successfully replicates the response of gusset plate and bracing members under fully reversed cyclic axial loading. Direct measurements from strain gauges applied to the physical models were used primarily to validate FE models, while comparisons of hysteresis load-displacement loops from physical and numerical models were used to highlight the overall performance of the FE models. The study shows the two design methods attain structural response as per the design intentions; however, the elliptical clearance method has a superiority over the standard linear method as a fact of improving detailing of the gusset plates, enhancing resisting capacity and improving deformability of a CBF structure. Considerations were proposed for improvement of guidelines for detailing gusset plates and bracing members in CBF structures.

Monolithic and Resolution with design of 10bit Current output Type Digital-to-Analog Converter (개선된 선형성과 해상도를 가진 10비트 전류 출력형 디지털-아날로그 변환기의 설계)

  • Song, Jun-Gue;Shin, Gun-Soon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.187-191
    • /
    • 2007
  • This paper describes a 3.3V 10 bit CMOS digital-to-analog converter with a divided architecture of a 7 MSB and a 3 LSB, which uses an optimal Thermal-to-Binary Decoding method with monotonicity, glitch energy. The output stage utilizes here implements a return-to-zero circuit to obtain the dynamic performance. Most of D/A converters in decoding circuit is complicated, occupies a large chip area. For these problems, this paper describes a D/A converter using an optimal Thermal-to-Binary Decoding method. the designed D/A converter using the CMOS n-well $0.35{\mu}m$ process0. The experimental data shows that the rise/fall time, settling time, and INL/DNL are 1.90ns/2.0ns, 12.79ns, and a less than ${\pm}2.5/{\pm}0.7$ LSB, respectively. The power dissipation of the D/A converter with a single power supply of 3.3V is about 250mW.

  • PDF

The Response Modification Factor of Inverted V-type Braced Steel Frames (역V형 가새골조의 반응수정계수)

  • Ahn, Hyung Joon;Jin, Song Mei
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • In this study of Eccentric Braced Frames have identified the following target eccentricity on the length of the inelastic behavior of the reaction by calculating the correction factor by comparing it to the value suggested by the earthquake provided material for the rational design aims to There are. As a variable-length V-braced frame analysis model stations were set up. Eccentricity faults in the model according to the length stiffness ratio, the maximum amount of energy dissipation were analyzed base shear and multi-layered model of the reaction from the eccentricity correction factor calculated on the length of the building standards proposed by KBC 2009 in response eccentricity correction factor calculated from The length varies. does not have the same response modification factor was confirmed.

Experimental Study on Buckling Restrained Knee Bracing Systems using Channel Scetions (채널 형강을 이용한 비좌굴 Knee Bracing System의 내진성능에 대한 실험적 연구)

  • Lee, Jin;Lee, Ki Hak;Lee, Han Seon;Kim, Hee Cheul;Lee, Young Hak
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.1
    • /
    • pp.71-81
    • /
    • 2009
  • In this study, the seismic performance of the Buckling Restrained Knee Bracing (BRKB) system was evaluated through a pin-connected one-bay, one-story frame. The BRKB system developed in this study was composed of a steel plate as a load-resisting core member and two channel sections to restrain local and global buckling of the core plate. The main purpose of the BRKB system is to restrengthen/rehabilitate old low- and mid-rise RC buildings, which, it is assumed, were designed with non-seismic designs and details. The main variables for the test specimens were the size of the core plates and the stiffeners, and the condition of the end plates. The test results showed that the size of the core plate, which was the main element of the load-resisting member, was the most important parameter in achieving a ductile behavior under tension as well as compression until the maximum displacement exceeds twice the design drift limit.

Thermal Design and Analysis for Space Imaging Sensor on LEO (지구 저궤도에서 운용되는 영상센서를 위한 열설계 및 열해석)

  • Shin, So-Min;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.474-480
    • /
    • 2011
  • Space Imaging Sensor operated on LEO is affected from the Earth IR and Albedo as well as the Sun Radiation. The Imaging Sensor exposed to extreme environment needs thermal control subsystem to be maintained in operating/non-operating allowable temperature. Generally, units are periodically dissipated on spacecraft panel, which is designed as radiator. Because thermal design of the imaging sensor inside a spacecraft is isolated, heat pipes connected to radiators on the panel efficiently transfer dissipation of the units. First of all, preliminary thermal design of radiating area and heater power is performed through steady energy balance equation. Based on preliminary thermal design, on-orbit thermal analysis is calculated by SINDA, so calculation for thermal design could be easy and rapid. Radiators are designed to rib-type in order to maintain radiating performance and reduce mass. After on-orbit thermal analysis, thermal requirements for Space Imaging Sensor are verified.