• Title/Summary/Keyword: energy dissipation performance

Search Result 739, Processing Time 0.028 seconds

Experimental and numerical investigation on the seismic behavior of the sector lead rubber damper

  • Xin Xu;Yun Zhou;Zhang Yan Chen;Song Wang;Ke Jiang
    • Earthquakes and Structures
    • /
    • v.26 no.3
    • /
    • pp.203-218
    • /
    • 2024
  • Beam-column joints in the frame structure are at high risk of brittle shear failure which would lead to significant residual deformation and even the collapse of the structure during an earthquake. In order to improve the damage issue and enhance the recoverability of the beam-column joints, a sector lead rubber damper (SLRD) has been developed. The SLRD can increase the bearing capacity and energy dissipation capacity, and also demonstrating recoverability of seismic performance following cyclic loading. In this paper, the hysteretic behavior of SLRD was experimentally investigated in terms of the regular hysteretic behavior, large deformation behavior and fatigue behavior. Furthermore, a parametric analysis was performed to study the influence of the primary design parameters on the hysteretic behavior of SLRD. The results show that SLRD resist the exerted loading through the shear capacity of both rubber parts coupled with the lead cores in the pre-yielding stage of lead cores. In the post-yielding phase, it is only the rubber parts of the SLRD that provide the shear capacity while the lead cores primarily dissipate the energy through shear deformation. The SLRD possesses a robust capacity for large deformation and can sustain hysteretic behavior when subjected to a loading rotation angle of 1/7 (equivalent to 200% shear strain of the rubber component). Furthermore, it demonstrates excellent fatigue resistance, with a degradation of critical behavior indices by no more than 15% in comparison to initial values even after 30 cycles. As for the designing practice of SLRD, it is recommended to adopt the double lead core scheme, along with a rubber material having the lowest possible shear modulus while meeting the desired bearing capacity and a thickness ratio of 0.4 to 0.5 for the thin steel plate.

Artificial intelligence design for dependence of size surface effects on advanced nanoplates through theoretical framework

  • Na Tang;Canlin Zhang;Zh. Yuan;A. Yvaz
    • Steel and Composite Structures
    • /
    • v.52 no.6
    • /
    • pp.621-626
    • /
    • 2024
  • The work researched the application of artificial intelligence to the design and analysis of advanced nanoplates, with a particular emphasis on size and surface effects. Employing an integrated theoretical framework, this study developed a more accurate model of complex nanoplate behavior. The following analysis considers nanoplates embedded in a Pasternak viscoelastic fractional foundation and represents the important step in understanding how nanoscale structures may respond under dynamic loads. Surface effects, significant for nanoscale, are included through the Gurtin-Murdoch theory in order to better describe the influence of surface stresses on the overall behavior of nanoplates. In the present analysis, the modified couple stress theory is utilized to capture the size-dependent behavior of nanoplates, while the Kelvin-Voigt model has been incorporated to realistically simulate the structural damping and energy dissipation. This paper will take a holistic approach in using sinusoidal shear deformation theory for the accurate replication of complex interactions within the nano-structure system. Addressing different aspectsof the dynamic behavior by considering the length scale parameter of the material, this work aims at establishing which one of the factors imposes the most influence on the nanostructure response. Besides, the surface stresses that become increasingly critical in nanoscale dimensions are considered in depth. AI algorithms subsequently improve the prediction of the mechanical response by incorporating other phenomena, including surface energy, material inhomogeneity, and size-dependent properties. In these AI- enhanced solutions, the improvement of precision becomes considerable compared to the classical solution methods and hence offers new insights into the mechanical performance of nanoplates when applied in nanotechnology and materials science.

Control Effectiveness of Shear Walls Connected by Beams with Friction Dampers (인방보에 마찰형 감쇠기가 설치된 전단벽의 제진효과)

  • Chung, Hee-San;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.1
    • /
    • pp.105-115
    • /
    • 2009
  • Numerical analysis of shear walls governed by flexural behavior is conducted for the seismic control performance of proposed friction dampers installed at the center of coupling beams. Control effectiveness of shear walls connected by beams with the proposed dampers are compared for single shear wall with same flexural rigidity. Average responses of the shear walls with the dampers are found with seven scaled-downed earthquakes based on KEC 2005 design spectrum. Slip load is the most important design parameter. It is designed to be 5, 10, 20, 30, 60, 90% of total vertical shear force at damper location to prevent damper slip in specific stories. Nonlinear time-history analysis is conducted by using SeismoStruct analysis program. Seismic control performance of the dampers is evaluated for base shear, energy dissipation, curvature and top-floor displacement. Results show that the dampers are the most effective in reducing the responses when their total slip load is 30% of total vertical shear force.

Bond deterioration of corroded steel in two different concrete mixes

  • Zhou, Haijun;Liang, Xuebing;Wang, Zeqiang;Zhang, Xiaolin;Xing, Feng
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.725-734
    • /
    • 2017
  • This paper investigated the effects of rebar corrosion on bond performance between rebar and two different concrete mixes (compressive strengths of 20.7 MPa and 44.4 MPa). The specimen was designed as a rebar centrally embedded in a 200 mm concrete cube, with two stirrups around the rebar to supply confinement. An electrochemical accelerated corrosion technique was applied to corrode the rebar. 120 specimens of two different concrete mixes with various reinforcing steel corrosion levels were manufactured. The corrosion crack opening width and length were recorded in detail during and after the corrosion process. Three different loading schemes: monotonic pull-out load, 10 cycles of constant slip loading followed by pull-out and varied slip loading followed by pull-out, were carried out on the specimens. The effects of rebar corrosion with two different concrete mixes on corrosion crack opening, bond strength and corresponding slip value, initial slope of bond-slip curve, residual bond stress, mechanical interaction stress, and energy dissipation, were discussed in detail. The mean value and coefficient of variation of these parameters were also derived. It was found that the coefficient of variation of the parameters of the corroded specimens was larger than those with intact rebar. There is also obvious difference in the two different concrete mixes for the effects of rebar corrosion on bond-slip parameters.

Performance evaluation of a seismic retrofitted R.C. precast industrial building

  • Nastri, Elide;Vergato, Mariacristina;Latour, Massimo
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.13-21
    • /
    • 2017
  • Recent seismic events occurred in Italy (Emilia-Romagna 2012, Abruzzo 2009) and worldwide (New Zealand 2010 and 2011) highlighted some of the weaknesses of precast concrete industrial buildings, especially those related to the connecting systems traditionally employed to fasten the cladding panels to the internal framing. In fact, one of the most commons fails it is possible to observe in such structural typologies is related to the out-of-plane collapse of the external walls due to the unsatisfactory behaviour of the connectors used to join the panels to the perimeter beams. In this work, the strengthening of a traditional industrial building, assumed as a case study, made by precast reinforced concrete is proposed by the adoption of a dual system allowing the reinforcement of the structure by acting both internally; by pendular columns and, externally, on the walls. In particular, traditional connections at the top of the walls are substituted by devices able to work as a slider with vertical axis while, the bottom of the walls is equipped with two or more hysteretic dampers working on the uplift of the cladding panels occurring under seismic actions. By means of this approach, the structure is stiffened; obtaining a reduction of the lateral drifts under serviceability limit states. In addition, its seismic behaviour is improved due to the additional source of energy dissipation represented by the dampers located at the base of the walls. The effectiveness of the suggested retrofitting approach has been checked by comparing the performance of the retrofitted structure with those of the structure unreinforced by means of both pushover and Incremental Dynamic Analyses (IDA) in terms of behaviour factor, assumed as a measure of the ductility capacity of the structure.

Seismic Performance of Precast Infill Walls with Strain-Hardening Cement Composite (변형경화형 시멘트 복합체를 사용한 프리캐스트 끼움벽판의 내진성능)

  • Kim, Sun-Woo;Jeon, Esther;Kim, Yun-Su;Ji, Sang-Kyu;Jang, Gwang-Soo;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.89-92
    • /
    • 2008
  • The seismic behavior of the lightly reinforced concrete frames (LRCFs) was controlled by the nonductile behavior of the critical regions. These critical regions require retrofit to improve the seismic behavior of the lightly reinforced concrete frames. Critical column end regions must be retrofit to increase the global ductility capacity. The objective of this research is to evaluate structural strengthening performance of lightly reinforced concrete frame with Strain hardening cement composite(SHCC) experimentally. The experimental investigation consisted of a cyclic load tests on 1/3-scale models of precast infill walls. Reinforcement detail of infill wall was variables in the experiment. The experimental results, as expected, show that the multiple crack pattern, strength, ductility and energy dissipation capacity are superior for specimen with SHCC infill wall due to bridging of fibers and stress redistribution in cement matrix.

  • PDF

Development of a novel self-centering buckling-restrained brace with BFRP composite tendons

  • Zhou, Z.;He, X.T.;Wu, J.;Wang, C.L.;Meng, S.P.
    • Steel and Composite Structures
    • /
    • v.16 no.5
    • /
    • pp.491-506
    • /
    • 2014
  • Buckling-restrained braces (BRBs) have excellent hysteretic behavior while buckling-restrained braced frames (BRBFs) are susceptible to residual lateral deformations. To address this drawback, a novel self-centering (SC) BRB with Basalt fiber reinforced polymer (BFRP) composite tendons is presented in this work. The configuration and mechanics of proposed BFRP-SC-BRBs are first discussed. Then an 1840-mm-long BFRP-SC-BRB specimen is fabricated and tested to verify its hysteric and self-centering performance. The tested specimen has an expected flag-shaped hysteresis character, showing a distinct self-centering tendency. During the test, the residual deformation of the specimen is only about 0.6 mm. The gap between anchorage plates and welding ends of bracing tubes performs as expected with the maximum opening value 6 mm when brace is in compression. The OpenSEES software is employed to conduct numerical analysis. Experiment results are used to validate the modeling methodology. Then the proposed numerical model is used to evaluate the influence of initial prestress, tendon diameter and core plate thickness on the performance of BFRP-SC-BRBs. Results show that both the increase of initial prestress and tendon diameters can obviously improve the self-centering effect of BFRP-SC-BRBs. With the increase of core plate thickness, the energy dissipation is improved while the residual deformation is generated when the core plate strength exceeds initial prestress force.

Seismic Resistance of Concrete-filled U-shaped Steel Beam-to-RC Column Connections (콘크리트채움 U형 강재보 - 콘크리트 기둥 접합부의 내진성능)

  • Hwang, Hyeon-Jong;Park, Hong-Gun;Lee, Cheol-Ho;Park, Chang-Hee;Lee, Chang-Nam;Kim, Hyoung-Seop;Kim, Sung-Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.83-97
    • /
    • 2011
  • In this study, the seismic details of a concrete-encased, U-shaped steel beam-to-RC column connection were developed. Three specimens of the beam-to-column connection were tested under cyclic loading to evaluate the seismic performance of the connection. The test parameters were the beam depth and the column section shape. The depths of the composite beams were 610 and 710 mm, including the slab depth. For the RC columns, a square section and a circular section were used. Special details using diagonal re-bars and exterior diaphragm plates were used to strengthen the connections with the rectangular and circular columns, respectively. The test results showed that the specimens exhibited good strength, deformation, and energy dissipation capacities. The deformation capacity exceeded 4% interstory drift angle, which is the requirement for the Special Moment Frame.

Seismic performance of lateral load resisting systems

  • Subramanian, K.;Velayutham, M.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.487-502
    • /
    • 2014
  • In buildings structures, the flexural stiffness reduction of beams and columns due to concrete cracking plays an important role in the nonlinear load-deformation response of reinforced concrete structures under service loads. Most Seismic Design Codes do not precise effective stiffness to be used in seismic analysis for structures of reinforced concrete elements, therefore uncracked section properties are usually considered in computing structural stiffness. But, uncracked stiffness will never be fully recovered during or after seismic response. In the present study, the effect of concrete cracking on the lateral response of structure has been taken into account. Totally 120 cases of 3 Dimensional Dynamic Analysis which considers the real and accidental torsional effects are performed using ETABS to determine the effective structural system across the height, which ensures the performance and the economic dimensions that achieve the saving in concrete and steel amounts thus achieve lower cost. The result findings exhibits that the dual system was the most efficient lateral load resisting system based on deflection criterion, as they yielded the least values of lateral displacements and inter-storey drifts. The shear wall system was the most economical lateral load resisting compared to moment resisting frame and dual system but they yielded the large values of lateral displacements in top storeys. Wall systems executes tremendous stiffness at the lower levels of the building, while moment frames typically restrain considerable deformations and provide significant energy dissipation under inelastic deformations at the upper levels. Cracking found to be more impact over moment resisting frames compared to the Shear wall systems. The behavior of various lateral load resisting systems with respect to time period, mode shapes, storey drift etc. are discussed in detail.

Numerical analysis and horizontal bearing capacity of steel reinforced recycled concrete columns

  • Ma, Hui;Xue, Jianyang;Liu, Yunhe;Dong, Jing
    • Steel and Composite Structures
    • /
    • v.22 no.4
    • /
    • pp.797-820
    • /
    • 2016
  • This paper simulates the hysteretic behavior of steel reinforced recycled concrete (SRRC) columns under cyclic loads using OpenSees software. The effective fiber model and displacement-based beam-column element in OpenSees is applied to each SRRC columns. The Concrete01 material model for recycled aggregate concrete (RAC) and Steel02 material model is proposed to perform the numerical simulation of columns. The constitutive models of RAC, profile steel and rebars in columns were assigned to each fiber element. Based on the modelling method, the analytical models of SRRC columns are established. It shows that the calculated hysteresis loops of most SRRC columns agree well with the test curves. In addition, the parameter studies (i.e., strength grade of RAC, stirrups strength, steel strength and steel ratio) on seismic performance of SRRC columns were also investigated in detail by OpenSees. The calculation results of parameter analysis show that SRRC columns suffered from flexural failure has good seismic performance through the reasonable design. The ductility and bearing capacity of columns increases as the increasing magnitude of steel strength, steel ratio and stirrups strength. Although the bearing capacity of columns increases as the strength grade of RAC increases, the ductility and energy dissipation capacity decreases gradually. Based on the test and numerical results, the flexural failure mechanism of SRRC columns were analysed in detail. The computing theories of the normal section of bearing capacity for the eccentrically loaded columns were adopted to calculate the nominal bending strength of SRRC columns subjected to vertical axial force under lateral cyclic loads. The calculation formulas of horizontal bearing capacity for SRRC columns were proposed based on their nominal bending strength.