• 제목/요약/키워드: energy dissipation performance

Search Result 739, Processing Time 0.022 seconds

Seismic Fragility Functions of a SDOF Nonlinear System with an Energy Dissipation Device (에너지 소산형 감쇠기가 설치된 단자유도 비선형 시스템의 지진취약도 함수)

  • Park, Ji-Hun;Yun, Soo-Yong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.1-13
    • /
    • 2012
  • Seismic fragility functions are derived for probabilistic evaluation of seismic control performance of energy dissipation devices installed in reinforced concrete structures. Displacement-dependent dampers are added to the nonlinear single-degree-of-freedom systems with different natural periods and hysteretic characteristics of which stiffness and strength has uncertainty. Nonlinear time history analysis is conducted for those SDOF systems and the result is processed statistically to obtain seismic fragility functions in the form of log normal distribution. Variation of seismic fragility functions for different parameters of SDOF systems and dampers are investigated and the seismic control performance is assessed probabilistically.

Development of miniature bar-type structural fuses with cold formed bolted connections

  • Guan, Dongzhi;Yang, Sen;Jia, Liang-Jiu;Guo, Zhengxing
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.53-73
    • /
    • 2020
  • A novel all-steel miniature bar-type structural fuse (MBSF) with cold formed bolted connections is developed in this study, which consists of a central energy dissipation core cut from a smooth round bar, an external confining tube and nuts. Three types of cross sections for the central energy dissipation core, i.e., triple-cut, double-cut and single-cut cross sections, were studied. Totally 18 specimens were axially tested under either symmetric or asymmetric cyclic loading histories, where the parameters such as cut cross sectional area ratio, length of the yielding portion and cross sectional type were investigated. Numerical simulation of 2 representative specimens were also conducted. An analytical model to evaluate the bending failure at the elastic portion was proposed, and a design method to avoid this failure mode was also presented. The experimental results show that the proposed MBSFs exhibit satisfactory hysteretic performance under both the two cyclic loading histories. Average strain values of 8% and 4% are found to be respectively suitable for designing the new MBSFs as the ultimate strain under the symmetric and asymmetric cyclic loadings.

The New Structural Design Process of Supertall Buildings in China

  • Lianjin, Bao;Jianxing, Chen;Peng, Qian;Yongqinag, Huang;Jun, Tong;Dasui, Wang
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.3
    • /
    • pp.219-226
    • /
    • 2015
  • By the end of 2014, the number of completed and under-construction supertall buildings above 250 meters in China reached 90 and 129, respectively. China has become one of the centers of supertall buildings in the world. Supertall buildings in China are getting taller, more slender, and more complex. The structural design of these buildings focuses on the efficiency of lateral resisting systems and the application of energy dissipation. Furthermore, the research, design, and construction of high-performance materials, pile foundations, and mega-members have made a lot of progress. Meanwhile, more and more challenges are presented, such as the improvement of structural system efficiency, the further understanding of failure models, the definition of design criteria, the application of high-performance materials, and construction monitoring. Thus, local structural engineers are playing a more important role in the design of supertall buildings.

Dynamic behaviors of viscous damper on concrete archaized building with lintel-column joint

  • Xue, Jianyang;Dong, Jinshuang;Sui, Yan
    • Earthquakes and Structures
    • /
    • v.13 no.4
    • /
    • pp.409-419
    • /
    • 2017
  • In order to analyze the vibration control effect of viscous damper in the concrete archaized buildings with lintel-column joints under seismic action, 3 specimens were tested under dynamic excitation. Two specimens with viscous damper were defined as the controlled component and one specimen without viscous damper was specified as the non-controlled component. The loading process and failure patterns were obtained from the test results. The failure characteristics, skeleton curves and mechanical behavior such as the load-displacement hysteretic loops, load carrying capacity, degradation of strength and rigidity, ductility and energy dissipation of the joints were analyzed. The results indicate that the load-bearing capacity of the controlled component is significantly higher than that of the non-controlled component. The former component has an average increase of 27.4% in yield load and 22.4% in ultimate load, respectively. Meanwhile, the performance of displacement ductility and the ability of energy dissipation for the controlled component are superior to those of the non-controlled component as well. Compared with non-controlled component, equivalent viscous damping coefficients are improved by 27.3%-30.8%, the average increase is 29.0% at ultimate load for controlled component. All these results reflect that the seismic performance of the controlled component is significantly better than that of the non-controlled component. These researches are helpful for practical application of viscous damper in the concrete archaizing buildings with lintel-column joints.

Performance Characteristics of a Hybrid Air-Conditioner for Telecommunication Equipment Rooms (통신기지국용 하이브리드 냉방기의 성능특성 연구)

  • Kim, Yong-Chan;Choi, Jong-Min;Kang, Hoon;Yoon, Joon-Sang;Kim, Young-Bae;Choi, Kwang-Min;Lee, Ho-Seong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.11
    • /
    • pp.874-880
    • /
    • 2006
  • The power density and heat dissipation rate per unit area of the telecommunication equipment have been increased with the technology development in the footprint of telecommunication hardware. A proper heat dissipation method from the PCB module is very important to allow reliable operation of its electronic component. In this study, a hybrid air-conditioner for the telecommunication equipment room was designed to save energy and obtain system reliability. For high outdoor temperatures, the hybrid system operates in the vapor compression cycle, while, for low outdoor temperatures, the hybrid system works in the secondary fluid cooling cycle with no operation of the compressor. The performance of the hybrid air-conditioner was measured by varying outdoor and indoor temperatures. The hybrid air-conditioner yielded 50% energy saving compared with the conventional refrigeration system when the mode switch temperature was $8.3^{\circ}C$.

Nonlinear Behavior of Composite Modular System's Joints (합성 모듈러 시스템 접합부의 비선형 거동 평가)

  • Choi, Young hoo;Lee, Jong il;Lee, Ho chan;Kim, Jin koo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.153-160
    • /
    • 2021
  • The connection of the steel structure serves to transmit external forces to the main components. The same is true for the behavior of modular systems composed mainly of steel or composite members. In this study, the joint performance of the composite and steel modules proposed was evaluated. The analytical models of the two joint types were constructed and were subjected to cyclic loading to assess the safety and the energy dissipation capacity of the joint types. The analysis results of the joints showed that the joints of the modular systems remain stable when the joint rotation reached the seismic performance limit state of the 0.02 rad required for steel intermediate moment frame. It was also observed that the joint of the composite modular system showed higher energy dissipation capacity compared with the steel modular system.

An experimental study on a steel multi-slit damper for seismic retrofit of soft-first story structures

  • Mohammad Mahdi Javidan;Jinkoo Kim
    • Steel and Composite Structures
    • /
    • v.50 no.6
    • /
    • pp.721-734
    • /
    • 2024
  • In this research, the efficiency of a metallic energy dissipation device for seismic retrofit of an existing structure is evaluated by cyclic loading test. The proposed device, which is called multi-slit damper, is made of weak and strong slit dampers connected in series. Its energy dissipation mechanism consists of two stages: (i) yielding of the weak-slit damper under minor earthquakes; (ii) restraint of further deformations of the weak slit damper and activation of the strong slit damper under major earthquakes using a gap mechanism. A reinforced concrete (RC) frame with characteristics similar to soft-first-story structures is tested under cyclic loading before and after retrofit using the proposed device. The details of the experimental study are described and the test is simulated in an available commercial software to validate the analytical model of the damper. To further verify the applicability of the damper, it is applied to an analysis model of a 4-story structure with soft first story and its seismic performance is evaluated before and after retrofit. The experimental and analysis results show that the multi-slit damper is effective in controlling seismic response of structures.

Increasing the attractiveness of physical education training with the involvement of nanotechnology

  • Jinyan Ge;Yuxin Hong;Rongtian Zeng;Yunbin Li;Mostafa Habibi
    • Advances in concrete construction
    • /
    • v.16 no.6
    • /
    • pp.291-302
    • /
    • 2023
  • As the first part of the body that strikes the ground during running, sports shoes are especially important for improving performance and reducing injuries. The use of new nanotechnology materials in the shoe's sole that can affect the movement angle of the foot and the ground reaction forces during running has not been reported yet. It is important to consider the material of the sole of the shoe since it determines the long-term performance of sports shoes, including their comfort while walking, running, and jumping. Running performance can be improved by polymer foam that provides good support with low energy dissipation (low energy dissipation). Running shoes have a midsole made of ethylene propylene copolymer (EPP) foam. The mechanical properties of EPP foam are, however, low. To improve the mechanical performance of EPP, conventional mineral fillers are commonly used, but these fillers sacrifice energy return. In this study, to improve the magnificence of physical education training with nanotechnology, carbon nanotubes (CNTs) derived from recycled plastics were prepared by catalytic chemical vapor deposition and used as nucleating and reinforcing agents. As a result of the results, the physical, mechanical, and dynamic response properties of EPP foam combined with CNT and zinc oxide nanoparticles were significantly improved. When CNT was added to the nanocomposites with a weight percentage of less than 0.5 wt%, the wear resistance, physical properties, dynamic stiffness, compressive strength, and rebound properties of EPP foams were significantly improved.

Seismic performance evaluation of steel moment frames with self-centering energy-dissipating coupled wall panels

  • Lu Sui;Hanheng Wu;Menglong Tao;Zhichao Jia;Tianhua Zhou
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.663-677
    • /
    • 2023
  • The self-centering energy-dissipating coupled wall panels (SECWs) possess a dual capacity of resiliency and energy dissipation. Used in steel frames, the SECWs can localize the damage of structures and reduce residual drifts. Based on OpenSEES, the nonlinear models were established and validated by experimental results. The seismic design procedure of steel frame with SECW structures (SF-SECW) was proposed in accordance with four-level seismic fortification objectives. Nonlinear time-history response analyses were carried out to validate the reasonability of seismic design procedure for 6-story and 12-story structures. Results show that the inter-story drifts of designed structures are less than drift limits. According to incremental dynamic analyses (IDA), the fragility curves of mentioned-above structure models under different limit states were obtained. The results indicate that designed structures have good seismic performance and meet the seismic fortification objectives.

Performance of innovative composite buckling-restrained fuse for concentrically braced frames under cyclic loading

  • Mohammadi, Masoud;Kafi, Mohammad A.;Kheyroddin, Ali;Ronagh, Hamid R.
    • Steel and Composite Structures
    • /
    • v.36 no.2
    • /
    • pp.163-177
    • /
    • 2020
  • Concentrically Braced Frames (CBFs) are commonly used in the construction of steel structures because of their ease of implementation, rigidity, low lateral displacement, and cost-effectiveness. However, the principal disadvantage of this kind of braced frame is the inability to provide deformation capacity (ductility) and buckling of bracing elements before yielding. This paper aims to present a novel Composite Buckling Restrained Fuse (CBRF) to be utilized as a bracing segment in concentrically braced frames that allows higher ductility and removes premature buckling. The proposed CBRF with relatively small dimensions is an enhancement on the Reduced Length Buckling Restrained Braces (RL-BRBs), consists of steel core and additional tensile elements embedded in a concrete encasement. Employing tensile elements in this composite fuse with a new configuration enhances the energy dissipation efficiency and removes the tensile strength limitations that exist in bracing elements that contain RL-BRBs. Here, the optimal length of the CBRF is computed by considering the anticipated strain demand and the low-cyclic fatigue life of the core under standard loading protocol. An experimental program is conducted to explore the seismic behavior of the suggested CBRF compare with an RL-BRB specimen under gradually increased cyclic loading. Moreover, Hysteretic responses of the specimens are evaluated to calculate the design parameters such as energy dissipation potential, strength adjustment factors, and equivalent viscous damping. The findings show that the suggested fuse possess a ductile behavior with high energy absorption and sufficient resistance and a reasonably stable hysteresis response under compression and tension.