DOI QR코드

DOI QR Code

Performance of innovative composite buckling-restrained fuse for concentrically braced frames under cyclic loading

  • Mohammadi, Masoud (Department of Civil Engineering, Semnan University) ;
  • Kafi, Mohammad A. (Department of Civil Engineering, Semnan University) ;
  • Kheyroddin, Ali (Department of Civil Engineering, Semnan University) ;
  • Ronagh, Hamid R. (Centre for Infrastructure Engineering, Western Sydney University)
  • Received : 2019.04.18
  • Accepted : 2020.07.06
  • Published : 2020.07.25

Abstract

Concentrically Braced Frames (CBFs) are commonly used in the construction of steel structures because of their ease of implementation, rigidity, low lateral displacement, and cost-effectiveness. However, the principal disadvantage of this kind of braced frame is the inability to provide deformation capacity (ductility) and buckling of bracing elements before yielding. This paper aims to present a novel Composite Buckling Restrained Fuse (CBRF) to be utilized as a bracing segment in concentrically braced frames that allows higher ductility and removes premature buckling. The proposed CBRF with relatively small dimensions is an enhancement on the Reduced Length Buckling Restrained Braces (RL-BRBs), consists of steel core and additional tensile elements embedded in a concrete encasement. Employing tensile elements in this composite fuse with a new configuration enhances the energy dissipation efficiency and removes the tensile strength limitations that exist in bracing elements that contain RL-BRBs. Here, the optimal length of the CBRF is computed by considering the anticipated strain demand and the low-cyclic fatigue life of the core under standard loading protocol. An experimental program is conducted to explore the seismic behavior of the suggested CBRF compare with an RL-BRB specimen under gradually increased cyclic loading. Moreover, Hysteretic responses of the specimens are evaluated to calculate the design parameters such as energy dissipation potential, strength adjustment factors, and equivalent viscous damping. The findings show that the suggested fuse possess a ductile behavior with high energy absorption and sufficient resistance and a reasonably stable hysteresis response under compression and tension.

Keywords

References

  1. Abdel Raheem, S. and Hayashikawa, T. (2013) "Energy dissipation system for earthquake protection of cable-stayed bridge towers", Earthq. Struct., 5(6), 657-678. https://doi.org/10.12989/eas.2013.5.6.657.
  2. AISC341 (2016), ANSI/AISC 341-16, Seismic Provisions for Structural Steel Buildings, United States of America, Chicago: American Institute of Steel Construction.
  3. AISC360 (2016), ANSI/AISC 360-16, Specification for Structural Steel Buildings, United States of America, Chicago: American Institute of Steel Construction.
  4. Andalib, Z., Kafi, M.A., Kheyroddin, A. and Bazzaz, M. (2014), "Experimental investigation of the ductility and performance of steel rings constructed from plates", J. Constr. Steel Res., 103, 77-88. https://doi.org/10.1016/j.jcsr.2014.07.016.
  5. Andalib, Z., Kafi, M.A., Kheyroddin, A., Bazzaz, M. and Momenzadeh, S. (2018), "Numerical evaluation of ductility and energy absorption of steel rings constructed from plates", Eng. Struct., 169, 94-106. https://doi.org/10.1016/j.engstruct.2018.05.034.
  6. ASTM-E8 (2016), ASTM E8/E8M-16a, Standard Test Methods for Tension Testing of Metallic Materials, West Conshohocken, PA.
  7. ATC24 (1992) Guidelines for cyclic seismic testing of components of steel structures, Redwood City, Calif.: Applied Technology Council.
  8. Bahirai, M. and Gerami, M. (2019), "An experimental and numerical investigation on seismic retrofit of steel moment frame connections", J. Earthq. Eng., 1-21. https://doi.org/10.1080/13632469.2019.1616336.
  9. Bazzaz, M., Andalib, Z., Kafi, M.A. and Kheyroddin, A. (2015a), "Evaluating the performance of OBS-C-O in steel frames under monotonic load", Earthq. Struct., 8(3), 697-710. http://dx.doi.org/10.12989/eas.2015.8.3.697
  10. .Bazzaz, M., Andalib, Z., Kafi, M.A. and Kheyroddin, A. (2015b), "Numerical comparison of the seismic performance of steel rings in off-centre bracing system and diagonal bracing system", Steel Compos. Struct., 19(4), 917-937. http://dx.doi.org/10.12989/scs.2015.19.4.917.
  11. Bazzaz, M., Kheyroddin, A., Kafi, M.A. and Andalib, Z. (2012), "Evaluation of the seismic performance of off-centre bracing system with ductile element in steel frames", Steel Compos. Struct., 12(5), 445-464. http://dx.doi.org/10.12989/scs.2012.12.5.445.
  12. Bergami, A. and Nuti, C. (2013), "A design procedure of dissipative braces for seismic upgrading structures", Earthq. Struct., 4, 85-105. https://doi.org/10.12989/eas.2013.4.1.085
  13. Bonetti, S. (2008), Ductile fuses for special concentrically braced frames, unpublished thesis (Doctor of Philosophy), University of Kansas.
  14. Bruneau, M., Uang, C.M. and Sabelli, R. (2011), Ductile Design of Steel Structures, 2nd Ed., McGraw-Hill Education.
  15. Budynas, R.G., Nisbett, J.K. and Shigley, J.E. (2011), Shigley's mechanical engineering design, 9th Ed., New York: McGraw-Hill.
  16. Calado, L., Proenca, J., Espinha, M. and Castiglioni, C. (2013) "Hysteretic behavior of dissipative welded fuses for earthquake resistant composite steel and concrete frames", Steel Compos. Struct., 14(6), 547-569. http://dx.doi.org/10.12989/scs.2013.14.6.547.
  17. .Craighead, G. (2009), 'Chapter 1 - High-Rise Building Definition, Development, and Use' in High-Rise Security and Fire Life Safety (Third Edition), Boston: Butterworth-Heinemann, 1-26.
  18. Deihim, M. and Kafi, M.A. (2017), "A parametric study into the new design of a steel energy-absorbing connection", Eng. Struct., 145, 22-33. https://doi.org/10.1016/j.engstruct.2017.04.056.
  19. DIN17100 (1980), DIN 17100, Steels for general structural purposes-Quality Standard.
  20. Dizaj, E., Fanaie, N. and Zarifpour, A. (2017), "Probabilistic seismic demand assessment of steel frames braced with reduced yielding segment buckling restrained braces", Adv. Struct. Eng., 21(7), 1002-1020. https://doi.org/10.1177/1369433217737115.
  21. Dougka, Y., Dimakogianni, D. and Vayas, I. (2014), "Seismic behavior of frames with innovative energy dissipation systems (FUSEIS 1-1)", Earthq. Struct., 6(5), 561-580. https://doi.org/10.12989/eas.2014.6.5.561.
  22. EERI. (1995), "Northridge Earthquake Reconnaissance Report. Vol. 1.", Earthq. Spectra, supplement C to vol. 11.
  23. Engelhardt, M.D. and Sabol, T.A. (1995), Testing of welded steel moment connections in response to the northridge earthquake: Progress Report to the AISC Advisory Committee on Special Moment-Resisting Frame Research.
  24. Engelhardt, M.D. and Sabol, T.A. (1998), "Reinforcing of steel moment connections with cover plates: benefits and limitations", Eng. Struct., 20(4-6), 510-520. https://doi.org/10.1016/S0141-0296(97)00038-2.
  25. Fanaie, N. and Dizaj, E. (2014), "Response modification factor of the frames braced with reduced yielding segment BRB", Struct. Eng. Mech., 50(1), 1-17. http://dx.doi.org/10.12989/sem.2014.50.1.001
  26. .FEMA356 (2000), Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Washington, DC.: Federal Emergency Management Agency.
  27. Fujimoto, M., Wada, A., Saeki, E., Watanabe, A. and Hitomi, Y. (1988), "A study on the unbonded brace encased in buckling restraining concrete and steel tube", J. Struct. Constr. Eng., 249-258. https://doi.org/10.3130/aijs.77.249
  28. Genna, F. and Gelfi, P. (2012), "Analysis of the lateral thrust in bolted steel buckling-restrained braces. I: Experimental and numerical results", J. Struct. Eng., 138(10), 1231-1243. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000558.
  29. Gorji Azandariani, M., Abdolmaleki, H. and Gorji Azandariani, A. (2020a), "Numerical and analytical investigation of cyclic behavior of steel ring dampers (SRDs)", Thin-Wall. Struct., 151, 106751. https://doi.org/10.1016/j.tws.2020.106751.
  30. Gorji Azandariani, M., Gorji Azandariani, A. and Abdolmaleki, H. (2020b), "Cyclic behavior of an energy dissipation system with steel dual-ring dampers (SDRDs)", J. Constr. Steel Res., 172, 106145. https://doi.org/10.1016/j.jcsr.2020.106145.
  31. Grigorian, C.E., Yang, T.S. and Popov, E.P. (1993), "Slotted Bolted Connection Energy Dissipators", Earthq. Spectra, 9(3), 491-504. https://doi.org/10.1193/1.1585726
  32. Haji, M., Naderpour, H. and Kheyroddin, A. (2019), "Experimental study on influence of proposed FRP-strengthening techniques on RC circular short columns considering different types of damage index", Compos.Struct., 209, 112-128. https://doi.org/10.1016/j.compstruct.2018.10.088.
  33. Hashin, Z. and Rotem, A. (1978), "A cumulative damage theory of fatigue failure", Mater. Sci. Eng., 34(2), 147-160. https://doi.org/10.1016/0025-5416(78)90045-9
  34. Hoveidae, N. (2018), "Numerical investigation of seismic response of hybrid buckling restrained braced frames", Periodica Polytechnica Civil Engineering, 63(1). https://doi.org/10.3311/PPci.12040.
  35. Hoveidae, N., Tremblay, R., Rafezy, B. and Davaran, A. (2015), "Numerical investigation of seismic behavior of short-core all-steel buckling restrained braces", J. Constr. Steel Res., 114, 89-99. https://doi.org/10.1016/j.jcsr.2015.06.005.
  36. Jahandari, S., Li, J., Saberian, M. and Shahsavarigoughari, M. (2017), "Experimental study of the effects of geogrids on elasticity modulus, brittleness, strength, and stress-strain behavior of lime stabilized kaolinitic clay", Geo Res J, 13, 49-58. https://doi.org/10.1016/j.grj.2017.02.001.
  37. Jahandari, S., Mojtahedi, S.F., Zivari, F., Jafari, M., Mahmoudi, M.R., Shokrgozar, A., Kharazmi, S., Vosough Hosseini, B., Rezvani, S. and Jalalifar, H. (2020), "The impact of long-term curing period on the mechanical features of lime-geogrid treated soils", Geomech. Geoeng., 1-13. https://doi.org/10.1080/17486025.2020.1739753.
  38. Jahandari, S., Saberian, M., Tao, Z., Mojtahedi, S.F., Li, J., Ghasemi, M., Rezvani, S.S. and Li, W. (2019a), "Effects of saturation degrees, freezing-thawing, and curing on geotechnical properties of lime and lime-cement concretes", Cold Regions Sci. Technol., 160, 242-251. https://doi.org/10.1016/j.coldregions.2019.02.011.
  39. Jahandari, S., Saberian, M., Zivari, F., Li, J., Ghasemi, M. and Vali, R. (2019b), "Experimental study of the effects of curing time on geotechnical properties of stabilized clay with lime and geogrid", Int. J. Geotech. Eng., 13(2), 172-183. https://doi.org/10.1080/19386362.2017.1329259.
  40. Jahandari, S., Toufigh, M.M., Li, J. and Saberian, M. (2018), "Laboratory study of the effect of degrees of saturation on lime concrete resistance due to the groundwater level increment", Geotech. Geological Eng., 36(1), 413-424. https://doi.org/10.1007/s10706-017-0335-4.
  41. Jiang, Z., Guo, Y., Zhang, B. and Zhang, X. (2015), "Influence of design parameters of buckling-restrained brace on its performance", J. Constr. Steel Res., 105, 139-150. https://doi.org/10.1016/j.jcsr.2014.10.024.
  42. Jiang, Z.Q., Dou, C., Guo, Y.L. and Zhang, A.L. (2017), "Theoretical study on design methods for pinned assembled BRB with flat core", Eng. Struct., 133, 1-13. https://doi.org/10.1016/j.engstruct.2016.12.004.
  43. Jurukovski, D., Petkovski, M. and Rakicevic, Z. (1995), "Energy absorbing in regular and composite steel frame structures", Eng. Struct., 17, 319-333. https://doi.org/10.1016/0141-0296(95)00015-Y
  44. Kachooee, A. and Kafi, M.A. (2018), "A suggested method for improving post buckling behavior of concentric braces based on experimental and numerical studies", Structures, 14, 333-347. https://doi.org/10.1016/j.istruc.2018.04.003.
  45. Karalis, A. and Stylianidis, K. (2013), "Experimental investigation of existing R/C frames strengthened by high dissipation steel link elements", Earthq. Struct., 5(2), 143-160. https://doi.org/10.12989/eas.2013.5.2.143.
  46. Kazemi, M., Hajforoush, M., Talebi, P.K., Daneshfar, M., Shokrgozar, A., Jahandari, S., Saberian, M. and Li, J. (2020a), "In-situ strength estimation of polypropylene fibre reinforced recycled aggregate concrete using Schmidt rebound hammer and point load test", J. Sustainable Cement-Based Materials, 1-18. https://doi.org/10.1080/21650373.2020.1734983.
  47. Kazemi, M., Li, J., Lahouti Harehdasht, S., Yousefieh, N., Jahandari, S. and Saberian, M. (2020b), "Non-linear behaviour of concrete beams reinforced with GFRP and CFRP bars grouted in sleeves", Structures, 23, 87-102. https://doi.org/10.1016/j.istruc.2019.10.013.
  48. Kim, J., Choi, H. and Chung, L. (2004), "Energy-based seismic design of structures with buckling-restrained braces", Steel Compos. Struct., 4(6), 437-452. https://doi.org/10.12989/scs.2004.4.6.437.
  49. Maalek, S., Heidary-Torkamani, H., Pirooz, M. and Naeeni, S.T.O. (2019), "Numerical investigation of cyclic performance of frames equipped with tube-in-tube buckling restrained braces", Steel Compos. Struct., 30(3), 201-215. https://doi.org/10.12989/scs.2019.30.3.201.
  50. Mete Guneyisi, E., Tunca, O. and Azez, I. (2015), "Nonlinear dynamic response of reinforced concrete building retrofitted with buckling restrained braces", Earthq. Struct., 8(6), 1349-1362. https://doi.org/10.12989/eas.2015.8.6.1349.
  51. Mirtaheri, M., Gheidi, A., Zandi, A.P., Alanjari, P. and Samani, H.R. (2011), "Experimental optimization studies on steel core lengths in buckling restrained braces", J. Constr. Steel Res., 67(8), 1244-1253. https://doi.org/10.1016/j.jcsr.2011.03.004.
  52. Mohammadi, M., Kafi, M.A. and Kheyroddin, A. (2017), Innovative composite buckling-restrained structural fuse (CBRF) with different capacity in tension and compression, Patent Number: 91536, Iranian organization for registration of deeds and properties.
  53. Mohammadi, M., Kafi, M.A., Kheyroddin, A. and Ronagh, H.R. (2018a), 'Experimental Study of Innovative Composite Buckling-Restrained Fuse for Concentrically Braced Frames Under Cyclic Load', in ASEA-SEC 04, Queensland, Australia, ISEC Press.
  54. Mohammadi, M., Kafi, M.A., Kheyroddin, A. and Ronagh, H.R. (2019), "Experimental and numerical investigation of an innovative buckling-restrained fuse under cyclic loading", Structures, 22, 186-199. https://doi.org/10.1016/j.istruc.2019.07.014.
  55. Mohammadi, M., Kafi, M.A., Kheyroddin, A., Ronagh, H.R. and Rashidi, M. (2018b), "Experimental and numerical investigation of innovative composite buckling-restrained fuse", in ACMSM25, Brisbane, Australia, springer.
  56. Mualla, I.H. and Belev, B. (2002), "Performance of steel frames with a new friction damper device under earthquake excitation", Eng. Struct., 24(3), 365-371. https://doi.org/10.1016/S0141-0296(01)00102-X.
  57. Ozcelik, R., Dikiciasik, Y., Civelek, K.B., Erdil, E.F. and Erdal, F. (2020) "Design of buckling restrained braces with composite technique", Steel Compos. Struct., 35(5), 687-699. https://doi.org/10.12989/scs.2020.35.5.687.
  58. Pall, A.S. and Marsh, C. (1982), "Response of Friction Damped Braced Frames", J. Struct. Division, 108(6), 1313-1323. https://doi.org/10.1061/JSDEAG.0005968
  59. Pandikkadavath, M.S. and Sahoo, D.R. (2016a), "Analytical investigation on cyclic response of buckling-restrained braces with short yielding core segments", Int. J. Steel Struct., 16, 1273-1285. https://doi.org/10.1007/s13296-016-0083-y.
  60. Pandikkadavath, M.S. and Sahoo, D.R. (2016b), "Cyclic testing of short-length buckling-restrained braces with detachable casings", Earthq. Struct., 10(3), 699-716. http://dx.doi.org/10.12989/eas.2016.10.3.699.
  61. Pandikkadavath, M.S. and Sahoo, D.R. (2017), "Mitigation of seismic drift response of braced frames using short yielding-core BRBs", Steel Compos. Struct., 23(3), 285-302. https://doi.org/10.12989/scs.2017.23.3.285.
  62. Park, J., Lee, J. and Kim, J. (2012), "Cyclic test of buckling restrained braces composed of square steel rods and steel tube", Steel Compos. Struct., 13(5), 423-436. https://doi.org/10.12989/scs.2012.13.5.423.
  63. Rahai, A.R. and Mortazavi, M. (2014), "Experimental and numerical study on the effect of core shape and concrete cover length on the behavior of BRBs", Int. J. Civil Eng., 12(4), 379-395.
  64. Rasekh, H., Joshaghani, A., Jahandari, S., Aslani, F. and Ghodrat, M. (2020), '2 - Rheology and workability of SCC' in Siddique, R., ed., Self-Compacting Concrete: Materials, Properties and Applications Woodhead Publishing, 31-63.
  65. Rashidi, M., Ghodrat, M., Samali, B. and Mohammadi, M. (2018), 'Decision Support Systems' in Management of information systems IntechOpen.
  66. Razavi Tabatabaei, S.A., Mirghaderi, S.R. and Hosseini, A. (2014), "Experimental and numerical developing of reduced length buckling-restrained braces", Eng. Struct., 77, 143-160. https://doi.org/10.1016/j.engstruct.2014.07.034.
  67. Saberian, M., Jahandari, S., Li, J. and Zivari, F. (2017), "Effect of curing, capillary action, and groundwater level increment on geotechnical properties of lime concrete: Experimental and prediction studies", J. Rock Mech. Geotech. Eng., 9(4), 638-647. https://doi.org/10.1016/j.jrmge.2017.01.004.
  68. Skinner, R.I., Tyler, R.G., Heine, A.J. and Robinson, W.H. (1980), "Hysteretic dampers for the protection of structures from earthquakes", Bulletin Of The New Zealand National Society For Earthquake Engineering, 13(1), 22-36. https://doi.org/10.5459/bnzsee.13.1.22-36
  69. Stratan, A., Zub, C. and Dubina, D. (2020), "Prequalification of a set of buckling restrained braces: Part I - experimental tests", Steel Compos. Struct., 34(4), 547-559. https://doi.org/10.12989/scs.2020.34.4.547.
  70. Takeuchi, T., Ida, M., Yamada, S. and Suzuki, K. (2008), "Estimation of Cumulative Deformation Capacity of Buckling Restrained Braces", J. Struct. Eng., 134(5), 822-831. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:5(822).
  71. Toghroli, A., Mehrabi, P., Shariati, M., Trung, N.T., Jahandari, S. and Rasekh, H. (2020), "Evaluating the use of recycled concrete aggregate and pozzolanic additives in fiber-reinforced pervious concrete with industrial and recycled fibers", Constr. Build. Mater., 252, 118997. https://doi.org/10.1016/j.conbuildmat.2020.118997.
  72. Tremblay, R., Bolduc, P., Neville, R. and DeVall, R. (2006), "Seismic testing and performance of buckling-restrained bracing systems", Can. J. Civil Eng., 33(2), 183-198. https://doi.org/10.1139/l05-103
  73. Tremblay, R., Bolduc, P., Neville, R. and DeVall, R. (2006), "Seismic testing and performance of buckling restrained bracing systems", Can. J. Civil Eng., 33, 183-198. https://doi.org/10.1139/l05-103.
  74. Tremblay, R., Poncet, L., Bolduc, P., Neville, R. and DeVall, R. (2004), "Testing and design of buckling restrained braces for Canadian application", Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, August 1-6.
  75. Tsai, K.C., Chen, H.W., Hong, C.P. and Su, Y.F. (1993), "Design of steel triangular plate energy absorbers for seismic-resistant construction", Earthq. Spectra, 9(3), 505-528. https://doi.org/10.1193/1.1585727.
  76. Tsai, K.C. and Weng, C.H. (2002), Experimental responses of double-tube unbonded brace elements and connections, National Taiwan University.
  77. Uriz, P. (2008), Toward earthquake-resistant design of concentrically braced steel-frame structures, Berkeley, Calif.: Pacific Earthquake Engineering Research Center.
  78. Usefi, N., Ronagh, H. and Mohammadi, M. (2018), "Finite element analysis of hybrid cold-formed steel shear wall panels", in ASEA-SEC04, Queensland, Australia.
  79. Usefi, N., Ronagh, H. and Sharafi, P. (2020), "Lateral performance of a new hybrid CFS shear wall panel for mid-rise construction", J. Constr. Steel Res., 168, 106000. https://doi.org/10.1016/j.jcsr.2020.106000.
  80. Watanabe, A., Hitomi, Y., Saeki, E., Wada, A. and Fujimoto, M. (1988), "Properties of brace encased in buckling-restraining concrete and steel tube", Proceedings of the 9th world conference on earthquake engineering, Tokyo-Kyoto, Japan.
  81. Xie, Q. (2005), "State of the art of buckling-restrained braces in Asia", J. Constr. Steel Res., 61(6), 727-748. https://doi.org/10.1016/j.jcsr.2004.11.005
  82. Xu, L., Fan, X., Lu, D. and Li, Z. (2016), "Hysteretic behavior studies of self-centering energy dissipation bracing system", Steel Compos. Struct., 20(6), 1205-1219. http://dx.doi.org/10.12989/scs.2016.20.6.1205
  83. .Yoshino, T. and Karino, Y. (1971), "Experimental study on shear wall with braces: Part 2. Summaries of technical papers of annual meeting", Architect. Inst. Japan, Struct. Eng. Section, 11, 403-404.
  84. Zub, C., Stratan, A. and Dubina, D. (2020), "Prequalification of a set of buckling restrained braces: Part II - numerical simulations", Steel Compos. Struct., 34(4), 561-580. https://doi.org/10.12989/scs.2020.34.4.561.

Cited by

  1. Steel hysteretic column dampers for seismic retrofit of soft-first-story structures vol.37, pp.3, 2020, https://doi.org/10.12989/scs.2020.37.3.259
  2. Investigation of performance of steel plate shear walls with partial plate-column connection (SPSW-PC) vol.39, pp.1, 2020, https://doi.org/10.12989/scs.2021.39.1.109
  3. Experimental study on steel hysteretic column dampers for seismic retrofit of structures vol.40, pp.4, 2020, https://doi.org/10.12989/scs.2021.40.4.495